Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.913
Filter
1.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39013281

ABSTRACT

We previously identified talin rod domain-containing protein 1 (TLNRD1) as a potent actin-bundling protein in vitro. Here, we report that TLNRD1 is expressed in the vasculature in vivo. Its depletion leads to vascular abnormalities in vivo and modulation of endothelial cell monolayer integrity in vitro. We demonstrate that TLNRD1 is a component of the cerebral cavernous malformations (CCM) complex through its direct interaction with CCM2, which is mediated by a hydrophobic C-terminal helix in CCM2 that attaches to a hydrophobic groove on the four-helix domain of TLNRD1. Disruption of this binding interface leads to CCM2 and TLNRD1 accumulation in the nucleus and actin fibers. Our findings indicate that CCM2 controls TLNRD1 localization to the cytoplasm and inhibits its actin-bundling activity and that the CCM2-TLNRD1 interaction impacts endothelial actin stress fiber and focal adhesion formation. Based on these results, we propose a new pathway by which the CCM complex modulates the actin cytoskeleton and vascular integrity.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Human Umbilical Vein Endothelial Cells , Humans , Animals , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Hemangioma, Cavernous, Central Nervous System/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Endothelial Cells/metabolism , Focal Adhesions/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Stress Fibers/metabolism , Actins/metabolism , Actin Cytoskeleton/metabolism , Protein Binding , Mice , Cell Nucleus/metabolism , Talin
2.
Organometallics ; 43(13): 1490-1501, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38993820

ABSTRACT

In this article, we report the development of ruthenium-catalyzed hydrogenolysis of epoxides to selectively give the branched (Markovnikov) alcohol products. In contrast to previously reported catalysts, the use of Milstein's PNN-pincer-ruthenium complex at room temperature allows the conversion of enantiomerically enriched epoxides to secondary alcohols without racemization of the product. The catalyst is effective for a range of aryl epoxides, alkyl epoxides, and glycidyl ethers and is the first homogeneous system to selectively promote hydrogenolysis of glycidol to 1,2-propanediol, without loss of enantiomeric purity. A detailed mechanistic study was conducted, including experimental observations of catalyst speciation under catalytically relevant conditions, comprehensive kinetic characterization of the catalytic reaction, and computational analysis via density functional theory. Heterolytic hydrogen cleavage is mediated by the ruthenium center and exogenous alkoxide base. Epoxide ring opening occurs through an opposite-side attack of the ruthenium hydride on the less-hindered epoxide carbon, giving the branched alcohol product selectively.

3.
iScience ; 27(6): 109912, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38974465

ABSTRACT

Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.

4.
Peptides ; 179: 171269, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960286

ABSTRACT

bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq. The objective of this study was to investigate the CREB3L1 protein-to-protein interactome of which little is known. For this approach, we created and screened a rat supraoptic nucleus yeast two-hybrid prey library with the bZIP region of rat CREB3L1 as the bait. Our yeast two-hybrid approach captured five putative CREB3L1 interacting prey proteins in the supraoptic nucleus. One interactor was selected by bioinformatic analyses for more detailed investigation by co-immunoprecipitation, immunofluorescent cellular localisation, and reporter assays in vitro. Here we identify dimerisation hub protein Dynein Light Chain LC8-Type 1 as a CREB3L1 interacting protein that in vitro enhances CREB3L1 activation of target genes.

5.
Nat Commun ; 15(1): 5585, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992040

ABSTRACT

MYCN oncogene amplification is frequently observed in aggressive childhood neuroblastoma. Using an unbiased large-scale mutagenesis screen in neuroblastoma-prone transgenic mice, we identify a single germline point mutation in the transcriptional corepressor Runx1t1, which abolishes MYCN-driven tumorigenesis. This loss-of-function mutation disrupts a highly conserved zinc finger domain within Runx1t1. Deletion of one Runx1t1 allele in an independent Runx1t1 knockout mouse model is also sufficient to prevent MYCN-driven neuroblastoma development, and reverse ganglia hyperplasia, a known pre-requisite for tumorigenesis. Silencing RUNX1T1 in human neuroblastoma cells decreases colony formation in vitro, and inhibits tumor growth in vivo. Moreover, RUNX1T1 knockdown inhibits the viability of PAX3-FOXO1 fusion-driven rhabdomyosarcoma and MYC-driven small cell lung cancer cells. Despite the role of Runx1t1 in MYCN-driven tumorigenesis neither gene directly regulates the other. We show RUNX1T1 forms part of a transcriptional LSD1-CoREST3-HDAC repressive complex recruited by HAND2 to enhancer regions to regulate chromatin accessibility and cell-fate pathway genes.


Subject(s)
Carcinogenesis , N-Myc Proto-Oncogene Protein , Neuroblastoma , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Humans , Mice , Carcinogenesis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice, Transgenic , Mice, Knockout , Transcription Factors/metabolism , Transcription Factors/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics
6.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000037

ABSTRACT

A complication of reducing sugars is that they can undergo Maillard chemical reactions, forming advanced glycation end-products (AGEs) that can induce oxidative stress and inflammation via engagements with the main receptor for AGEs (RAGE) in various tissues. Certain sugars, such as glucose and fructose, are well known to cause AGE formation. Recently, allulose has emerged as a rare natural sugar that is an epimer of fructose and which is of low caloric content that is minimally metabolized, leading to it being introduced as a low-calorie sugar alternative. However, the relative ability of allulose to generate AGEs compared to glucose and fructose is not known. Here we assess the accumulation of AGEs in cell-free, in vitro, and in vivo conditions in response to allulose and compare it to glycation mediated by glucose or fructose. AGEs were quantified in cell-free samples, cell culture media and lysates, and rat serum with glycation-specific ELISAs. In cell-free conditions, we observed concentration and time-dependent increases in AGEs when bovine serum albumin (BSA) was incubated with glucose or fructose and significantly less glycation when incubated with allulose. AGEs were significantly elevated when pulmonary alveolar type II-like cells were co-incubated with glucose or fructose; however, significantly less AGEs were detected when cells were exposed to allulose. AGE quantification in serum obtained from rats fed a high-fat, low-carb (HFLC) Western diet for 2 weeks revealed significantly less glycation in animals co-administered allulose compared to those exposed to stevia. These results suggest allulose is associated with less AGE formation compared to fructose or glucose, and support its safety as a low-calorie sugar alternative.


Subject(s)
Fructose , Glycation End Products, Advanced , Animals , Glycation End Products, Advanced/metabolism , Rats , Glycosylation , Fructose/metabolism , Monosaccharides/metabolism , Glucose/metabolism , Male , Serum Albumin, Bovine/metabolism , Receptor for Advanced Glycation End Products/metabolism , Rats, Sprague-Dawley
7.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948747

ABSTRACT

SARS-CoV-2 virus has continued to evolve over time necessitating the adaptation of vaccines to maintain efficacy. Monoclonal antibodies (mAbs) against SARS-CoV-2 were a key line of defense for unvaccinated or immunocompromised individuals. However, these mAbs are now ineffective against current SARS-CoV-2 variants. Here, we tested three aspects of αSARS-CoV-2 therapeutics. First, we tested whether Fc engagement is necessary for in vivo clearance of SARS-CoV-2. Secondly, we tested bi-specific killer engagers (BiKEs) that simultaneously engage SARS-CoV-2 and a specific Fc receptor. Benefits of these engagers include the ease of manufacturing, stability, more cell-specific targeting, and high affinity binding to Fc receptors. Using both mAbs and BiKEs, we found that both neutralization and Fc receptor engagement were necessary for effective SARS-CoV-2 clearance. Thirdly, due to ACE2 being necessary for viral entry, ACE2 will maintain binding to SARS-CoV-2 despite viral evolution. Therefore, we used an ACE2 decoy Fc-fusion or BiKE, instead of an anti-SARS-CoV-2 antibody sequence, as a potential therapeutic that would withstand viral evolution. We found that the ACE2 decoy approach also required Fc receptor engagement and, unlike traditional neutralizing antibodies against specific variants, enabled the clearance of two distinct SARS-CoV-2 variants. These data show the importance of Fc engagement for mAbs, the utility of BiKEs as therapies for infectious disease, and the in vivo effectiveness of the ACE2 decoy approach. With further studies, we predict combining neutralization, the cellular response, and this ACE2 decoy approach will benefit individuals with ineffective antibody levels. Abbreviations: ACE2, scFv, mAb, BiKE, COVID-19, Fc, CD16, CD32b, CD64, d.p.i. Key points: With equal dosing, both neutralization and Fc engagement are necessary for the optimal efficacy of in vivo antibodies and bi-specific killer engagers (BiKEs) against SARS-CoV-2. BiKEs can clear SARS-CoV-2 virus and protect against severe infection in the hACE2-K18 mouse model. ACE2 decoys as part of Fc-fusions or BiKEs provide in vivo clearance of two disparate SARS-CoV-2 variants.

8.
Nat Commun ; 15(1): 6084, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030160

ABSTRACT

Tuning the properties of a pair of entangled electron and hole in a light-induced exciton is a fundamentally intriguing inquiry for quantum science. Here, using semiconducting hybrid perovskite as an exploratory platform, we discover that Nd2+-doped CH3NH3PbI3 (MAPbI3) perovskite exhibits a Kondo-like exciton-spin interaction under cryogenic and photoexcitation conditions. The feedback to such interaction between excitons in perovskite and the localized spins in Nd2+ is observed as notably prolonged carrier lifetimes measured by time-resolved photoluminescence, ~10 times to that of pristine MAPbI3 without Nd2+ dopant. From a mechanistic standpoint, such extended charge separation states are the consequence of the trap state enabled by the antiferromagnetic exchange interaction between the light-induced exciton and the localized 4 f spins of the Nd2+ in the proximity. Importantly, this Kondo-like exciton-spin interaction can be modulated by either increasing Nd2+ doping concentration that enhances the coupling between the exciton and Nd2+ 4 f spins as evidenced by elongated carrier lifetime, or by using an external magnetic field that can nullify the spin-dependent exchange interaction therein due to the unified orientations of Nd2+ spin angular momentum, thereby leading to exciton recombination at the dynamics comparable to pristine MAPbI3.

9.
Front Psychol ; 15: 1409368, 2024.
Article in English | MEDLINE | ID: mdl-39040959

ABSTRACT

Currently, the study of esports is growing within the field of psychology. Among the different variables attracting interest - including stress or psychological factors associated with performance - an emerging concept known as tilt is gaining prominence in the literature. However, this construct has yet to be operationalized or defined. Thus, the present study aims to address this gap by defining and conceptualizing TILT while devising and validating a questionnaire to measure the construct in esports players. The initial phase of the study comprised 27 interviews conducted with professional players (n = 6), semi-professionals (n = 8), amateurs (n = 8), and coaches (n = 5) to characterize the concept of tilt. Following these interviews, a definition of tilt was formulated, and a panel of five experts in sports psychology and esports proposed a comprehensive set of 53 items. A total of 488 participants (278 males, 210 females), aged 18-50 (mean age = 26.9 years, SD = 7.57), completed the survey, including the 53 tilt items, a questionnaire measuring toxic behavior, and the Internet Gaming Disorder Scale-Short Form (IGDS9-SF). The tilt construct is primarily characterized as a state of frustration escalating into anger, resulting in diminished performance, attention, and recurring negative thoughts about errors. Its onset typically coincides with stressful situations, persisting for approximately 30 min. Through an Exploratory Factor Analysis (EFA), 18 items were retained and categorized into two factors: Causes (7 Items) and Consequences (11 Items) of tilt. The entire questionnaire yielded a Cronbach's α of 0.922, with the first and second factors showing values of 0.854 and 0.890, respectively. Confirmatory factor analysis (CFA) revealed an acceptable fit for the 2-factor solution. Correlations with related constructs, such as Toxic Behavior and IGD, provided preliminary evidence of external validity. Empirical evidence for the validity and internal consistency of the Tilt Scale is robust, indicating its potential utility in future research on the psychological experiences of esports players.

10.
Article in English | MEDLINE | ID: mdl-39042830

ABSTRACT

Microencapsulation is an advanced methodology for the protection, preservation, and/or delivery of active materials in a wide range of industrial sectors, such as pharmaceuticals, cosmetics, fragrances, paints, coatings, detergents, food products, and agrochemicals. Polymeric materials have been extensively used as microcapsule shells to provide appropriate barrier properties to achieve controlled release of the encapsulated active ingredient. However, significant limitations are associated with such capsules, including undesired leaching and the nonbiodegradable nature of the typically used polymers. In addition, the energy cost of manufacturing microcapsules is an important factor to be considered when designing microcapsule systems and the corresponding production processes. Recent factors linked to UN sustainability goals are modifying how such microencapsulation systems should be designed in pursuit of "ideal" microcapsules that are efficient, safe, cost-effective and environmentally friendly. This review provides an overview of advances in microencapsulation, with emphasis on sustainable microcapsule designs. The key evaluation techniques to assess the biodegradability of microcapsules, in compliance with recently evolving European Union requirements, are also described. Moreover, the most common methodologies for the fabrication of microcapsules are presented within the framework of their energy demand. Recent promising microcapsule designs are also highlighted for their suitability toward meeting current design requirements and stringent regulations, tackling the ongoing challenges, limitations, and opportunities.

11.
Eur J Clin Nutr ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003347

ABSTRACT

BACKGROUND: Mycoprotein is a high-fibre food previously shown to reduce postprandial glucose concentrations when ingested within a mixed-meal. We applied a dual stable isotope tracer approach to determine whether this is due to a reduced rate of appearance of glucose, in participants of ranging BMI. METHODS: Twenty-four adults (F = 8, BMI 30 ± 6 kg·m-2) attended 2 trials in a double-blind, randomised, cross-over design. Participants ingested two energy and macronutrient matched milk-based drinks (enriched with 1000 mg [U-13C6] glucose in a subset of 12 participants), containing 50 g glucose and either 0 (CON) or 20 g (MYC) mycoprotein. A primed continuous intravenous infusion of D-[6,6-2H2] glucose determined plasma glucose kinetics over 6 h. Postprandial time-course, and AUC, of glucose and insulin concentration, rate of disappearance (RdT) and appearance of exogenous (RaEx), endogenous (EGP), and total (RaT) plasma glucose were assessed using two- and one-way ANOVA. RESULTS: Drink ingestion increased blood glucose and serum insulin concentrations (P < 0.05) and were comparable between conditions (P > 0.05). Both RaT and RdT were higher with MYC compared with CON over 6 h (mean 6 h glucose appearance and disappearance increased by 5 and 9%, respectively, P < 0.05). RaEx was not affected by MYC ingestion over 6 h (P > 0.05). The mean contribution of EGP to total glucose appearance was 15% greater with MYC, with a trend towards significance (P = 0.05). There was no relationship between BMI and the response to MYC ingestion for any of the variables (P < 0.05). CONCLUSION: The ingestion of mycoprotein within a mixed-meal impacted postprandial glucose kinetics, but not blood glucose or serum insulin concentrations, in individuals of ranging BMI. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE: This trial was registered at clinicaltrials.gov as NCT04084639 and can be accessed at https://clinicaltrials.gov/ct2/show/NCT04084639 .

12.
Proc Natl Acad Sci U S A ; 121(30): e2407461121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39018191

ABSTRACT

The Shaker family of voltage-gated K+ channels has been thought of as an animal-specific ion channel family that diversified in concert with nervous systems. It comprises four functionally independent gene subfamilies (Kv1-4) that encode diverse neuronal K+ currents. Comparison of animal genomes predicts that only the Kv1 subfamily was present in the animal common ancestor. Here, we show that some choanoflagellates, the closest protozoan sister lineage to animals, also have Shaker family K+ channels. Choanoflagellate Shaker family channels are surprisingly most closely related to the animal Kv2-4 subfamilies which were believed to have evolved only after the divergence of ctenophores and sponges from cnidarians and bilaterians. Structural modeling predicts that the choanoflagellate channels share a T1 Zn2+ binding site with Kv2-4 channels that is absent in Kv1 channels. We functionally expressed three Shakers from Salpingoeca helianthica (SheliKvT1.1-3) in Xenopus oocytes. SheliKvT1.1-3 function only in two heteromultimeric combinations (SheliKvT1.1/1.2 and SheliKvT1.1/1.3) and encode fast N-type inactivating K+ channels with distinct voltage dependence that are most similar to the widespread animal Kv1-encoded A-type Shakers. Structural modeling of the T1 assembly domain supports a preference for heteromeric assembly in a 2:2 stoichiometry. These results push the origin of the Shaker family back into a common ancestor of metazoans and choanoflagellates. They also suggest that the animal common ancestor had at least two distinct molecular lineages of Shaker channels, a Kv1 subfamily lineage predicted from comparison of animal genomes and a Kv2-4 lineage predicted from comparison of animals and choanoflagellates.


Subject(s)
Choanoflagellata , Evolution, Molecular , Shaker Superfamily of Potassium Channels , Animals , Choanoflagellata/genetics , Choanoflagellata/metabolism , Shaker Superfamily of Potassium Channels/genetics , Shaker Superfamily of Potassium Channels/metabolism , Phylogeny , Amino Acid Sequence
13.
Bioinformatics ; 40(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38970365

ABSTRACT

MOTIVATION: As more behavioural assays are carried out in large-scale experiments on Drosophila larvae, the definitions of the archetypal actions of a larva are regularly refined. In addition, video recording and tracking technologies constantly evolve. Consequently, automatic tagging tools for Drosophila larval behaviour must be retrained to learn new representations from new data. However, existing tools cannot transfer knowledge from large amounts of previously accumulated data. We introduce LarvaTagger, a piece of software that combines a pre-trained deep neural network, providing a continuous latent representation of larva actions for stereotypical behaviour identification, with a graphical user interface to manually tag the behaviour and train new automatic taggers with the updated ground truth. RESULTS: We reproduced results from an automatic tagger with high accuracy, and we demonstrated that pre-training on large databases accelerates the training of a new tagger, achieving similar prediction accuracy using less data. AVAILABILITY AND IMPLEMENTATION: All the code is free and open source. Docker images are also available. See gitlab.pasteur.fr/nyx/LarvaTagger.jl.


Subject(s)
Behavior, Animal , Drosophila , Larva , Software , Animals , Behavior, Animal/physiology , Video Recording/methods , Neural Networks, Computer
14.
Nanoscale Adv ; 6(15): 3785-3792, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39050957

ABSTRACT

We report multinary CuZn2AS x Se4-x semiconductor nanocrystals in a wurtzite phase, achieved via hot-injection synthesis. These nanocrystals exhibit a tunable bandgap and photoluminescence in the visible range. We employ density functional theory and virtual crystal approximation to reveal the bandgap trends influenced by the main group metals and S/Se alloying.

15.
Nature ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048816

ABSTRACT

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.

16.
Am Surg ; : 31348241269407, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058406

ABSTRACT

Background: Despite increasing sub-specialization, general surgeons continue to perform oncologic thoracic surgeries. Our objective was to determine whether general surgery resident participation in thoracic surgery affects surgical quality or oncologic outcomes. We hypothesized that patient outcomes with and without resident participation would be similar. Methods: We retrospectively reviewed the electronic health records of patients with stage 0-IV lung cancer undergoing oncologic pulmonary resection at BLINDED FOR REVIEW during an 11-year period (2012-2022). Patients younger than 18 years or older than 85 years were excluded, as were those who had incomplete follow-up data or were unregistered in our institutional cancer registry. Patients were divided into groups based on whether residents or staff surgeons completed >50% of the critical portions of the operation. We compared 30-day morbidity outcomes, overall survival (OS), and disease-free survival (DFS). Results: Three hundred thirteen patients met inclusion criteria. Demographic and clinical characteristics were similar between groups, as were types of surgical resection and median operative times. A statistical difference was found in the distribution of surgical approach. The odds of morbidity were 65% higher in the Staff group (OR=1.65; 95% CI, 1.007-2.71). Resident participation was not significantly associated with OS or DFS (P =.32 and P =.54, respectively). Discussion: General surgery resident involvement in lung cancer operations is not associated with longer operative times but is associated with a higher likelihood of a thoracotomy. General surgery resident involvement was associated with decreased postoperative morbidity and did not significantly affect OS or DFS.

17.
ACS Omega ; 9(26): 28385-28396, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973847

ABSTRACT

Commercial perfume microcapsules are becoming popular across the globe to fulfill consumers' demands. However, most of microcapsules rely on synthetic polymers and/or animal-sourced ingredients to form the shells. Therefore, replacement of the shell materials is imperative to minimize environmental microplastic pollution, as well as to meeting peoples' needs, religious beliefs, and lifestyles. Herein, we report a methodology to fabricate environmentally benign dual-shell (fungal chitosan-SiO2) microcapsules laden with fragrance oil (hexyl salicylate). Anionically stabilized oil droplets were coated with fungal chitosan via interfacial electrostatic interactions at pH 2, which were then covered by an inorganic coating of SiO2 produced via external alkaline mineralization of sodium silicate. Core-shell microcapsules with a spherical morphology were achieved. Under compression, dual-shell chitosan-SiO2 microcapsules yielded a mean nominal rupture stress of 3.0 ± 0.2 MPa, which was significantly higher than that of single-shell microcapsules (1.7 ± 0.2 MPa). After 20 days in neutral pH water, only ∼2.5% of the oil was released from dual-shell microcapsules, while single-shell microcapsules cumulatively released more than 10%. These findings showed that the additional SiO2 coating significantly enhanced both mechanical and barrier properties of microcapsules, which may be appealing for multiple commercial applications, including cosmetics and detergents.

19.
Drugs R D ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958918

ABSTRACT

BACKGROUND: Pegfilgrastim-cbqv/CHS-1701 (UDENYCA®) (hereafter referred to as pegfilgrastim-cbqv) was approved in 2018 by the US Food and Drug Administration as a biosimilar for pegfilgrastim (Neulasta®) (hereafter referred to as pegfilgrastim). Both pegfilgrastim-cbqv and pegfilgrastim are conjugates of recombinant human granulocyte colony stimulating factor (r-metHuG-CSF) with a 20 kDa polyethylene glycol (PEG) indicated to decrease the incidence of infection, as manifested by febrile neutropenia, in patients receiving myelosuppressive anticancer drugs. The demonstration of analytical similarity for PEG-protein conjugates presents unique challenges since both the protein and PEG attributes must be characterized. OBJECTIVE: The current study demonstrates the analytical similarity of pegfilgrastim-cbqv and the reference product, pegfilgrastim. In addition to the physicochemical and functional characterization of the protein, the study assessed attributes specific to PEGylation including PEG size and polydispersity, site of attachment, linker composition, and PEGylation process-related variants. METHODS: The structural, functional, and stability attributes of pegfilgrastim-cbqv and pegfilgrastim were compared using state-of-the-art analytical methods. For the protein, the primary structure, disulfide structure, and secondary and tertiary structures were assessed using traditional protein characterization techniques such as mass spectrometry (MS), circular dichroism (CD), intrinsic fluorescence, and differential scanning calorimetry (DSC), as well as more advanced techniques such as two-dimensional (2D) nuclear magnetic resonance (NMR) and hydrogen deuterium exchange (HDX). For the PEG moiety, the site of attachment, occupancy, linker composition, size and polydispersity were compared using mass spectrometry (both intact and after endoprotease digestion), multiangle light scattering detection (MALS), and Edman degradation. Purity assessments included the assessment of both protein variants and PEGylation variants using chromatographic and electrophoretic analytical separation techniques. The functional similarity between pegfilgrastim-cbqv and pegfilgrastim was compared using both a cell-based bioassay and surface plasmon resonance (SPR). The degradation rates and stability profiles were compared under accelerated and stressed conditions. RESULTS: Biosimilarity was demonstrated by a thorough assessment of physiochemical and functional attributes, as well as comparative stability, of pegfilgrastim-cbqv relative to pegfilgrastim. These studies demonstrated identical primary structure and disulfide structure, highly similar secondary and tertiary structure, as well as functional similarity. The impurity profile of pegfilgrastim-cbqv was comparable to that of pegfilgrastim with only minor differences in PEGylation variants and a slight offset in the PEG molar mass. These differences were not clinically relevant. The degradation profiles were qualitatively and quantitatively similar under accelerated and stress conditions. CONCLUSION: The structural, functional, and stability data demonstrate that pegfilgrastim-cbqv is highly similar to the reference product, pegfilgrastim.

20.
Nat Commun ; 15(1): 5608, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969637

ABSTRACT

Force transmission through adherens junctions (AJs) is crucial for multicellular organization, wound healing and tissue regeneration. Recent studies shed light on the molecular mechanisms of mechanotransduction at the AJs. However, the canonical model fails to explain force transmission when essential proteins of the mechanotransduction module are mutated or missing. Here, we demonstrate that, in absence of α-catenin, ß-catenin can directly and functionally interact with vinculin in its open conformation, bearing physiological forces. Furthermore, we found that ß-catenin can prevent vinculin autoinhibition in the presence of α-catenin by occupying vinculin´s head-tail interaction site, thus preserving force transmission capability. Taken together, our findings suggest a multi-step force transmission process at AJs, where α-catenin and ß-catenin can alternatively and cooperatively interact with vinculin. This can explain the graded responses needed to maintain tissue mechanical homeostasis and, importantly, unveils a force-bearing mechanism involving ß-catenin and extended vinculin that can potentially explain the underlying process enabling collective invasion of metastatic cells lacking α-catenin.


Subject(s)
Adherens Junctions , Mechanotransduction, Cellular , Vinculin , alpha Catenin , beta Catenin , Vinculin/metabolism , Adherens Junctions/metabolism , beta Catenin/metabolism , alpha Catenin/metabolism , alpha Catenin/genetics , Animals , Humans , Mice , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...