Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(24): 243601, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29286721

ABSTRACT

We report on a laser locked to a silicon cavity operating continuously at 4 K with 1×10^{-16} instability and a median linewidth of 17 mHz at 1542 nm. This is a tenfold improvement in short-term instability, and a 10^{4} improvement in linewidth, over previous sub-10-K systems. Operating at low temperatures reduces the thermal noise floor and, thus, is advantageous toward reaching an instability of 10^{-18}, a long-sought goal of the optical clock community. The performance of this system demonstrates the technical readiness for the development of the next generation of ultrastable lasers that operate with an ultranarrow linewidth and long-term stability without user intervention.

2.
Opt Lett ; 39(7): 1980-3, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686654

ABSTRACT

Active control and cancellation of residual amplitude modulation (RAM) in phase modulation of an optical carrier is one of the key technologies for achieving the ultimate stability of a laser locked to an ultrastable optical cavity. Furthermore, such techniques are versatile tools in various frequency modulation-based spectroscopy applications. In this Letter we report a simple and robust approach to actively stabilize RAM in an optical phase modulation process. We employ a waveguide-based electro-optic modulator (EOM) to provide phase modulation and implement an active servo with both DC electric field and temperature feedback onto the EOM to cancel both the in-phase and quadrature components of the RAM. This technique allows RAM control on the parts-per-million level where RAM-induced frequency instability is comparable to or lower than the fundamental thermal noise limit of the best available optical cavities.

3.
Science ; 341(6146): 632-6, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23929976

ABSTRACT

Strongly interacting quantum many-body systems arise in many areas of physics, but their complexity generally precludes exact solutions to their dynamics. We explored a strongly interacting two-level system formed by the clock states in (87)Sr as a laboratory for the study of quantum many-body effects. Our collective spin measurements reveal signatures of the development of many-body correlations during the dynamical evolution. We derived a many-body Hamiltonian that describes the experimental observation of atomic spin coherence decay, density-dependent frequency shifts, severely distorted lineshapes, and correlated spin noise. These investigations open the door to further explorations of quantum many-body effects and entanglement through use of highly coherent and precisely controlled optical lattice clocks.

4.
Opt Lett ; 37(12): 2196-8, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22739853

ABSTRACT

We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intracavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for f(rep) and f(ceo), producing a robust and low phase noise fiber frequency comb. The comb was self-referenced with an f-2f interferometer and phase locked to an ultrastable optical reference used for the JILA Sr optical clock at 698 nm, exhibiting 0.21 rad and 0.47 rad of integrated phase errors (over 1 mHz-1 MHz), respectively. Alternatively, the comb was locked to two optical references at 698 nm and 1064 nm, obtaining 0.43 rad and 0.14 rad of integrated phase errors, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...