Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neuropsychopharmacology ; 46(3): 579-602, 2021 02.
Article in English | MEDLINE | ID: mdl-32781459

ABSTRACT

Maternal immune activation (MIA) and poor maternal nutritional habits are risk factors for the occurrence of neurodevelopmental disorders (NDD). Human studies show the deleterious impact of prenatal inflammation and low n-3 polyunsaturated fatty acid (PUFA) intake on neurodevelopment with long-lasting consequences on behavior. However, the mechanisms linking maternal nutritional status to MIA are still unclear, despite their relevance to the etiology of NDD. We demonstrate here that low maternal n-3 PUFA intake worsens MIA-induced early gut dysfunction, including modification of gut microbiota composition and higher local inflammatory reactivity. These deficits correlate with alterations of microglia-neuron crosstalk pathways and have long-lasting effects, both at transcriptional and behavioral levels. This work highlights the perinatal period as a critical time window, especially regarding the role of the gut-brain axis in neurodevelopment, elucidating the link between MIA, poor nutritional habits, and NDD.


Subject(s)
Fatty Acids, Omega-3 , Prenatal Exposure Delayed Effects , Animals , Behavior, Animal , Brain , Female , Humans , Inflammation , Microglia , Pregnancy
2.
Brain Behav Immun ; 85: 162-169, 2020 03.
Article in English | MEDLINE | ID: mdl-31100369

ABSTRACT

Essential polyunsaturated fatty acids (PUFA) from the n-3 and n-6 series constitute the building blocks of brain cell membranes where they regulate most aspects of cell physiology. They are either biosynthesized from their dietary precursors or can be directly sourced from the diet. An overall increase in the dietary n-6/n-3 PUFA ratio, as observed in the Western diet, leads to reduced n-3 PUFAs in tissues that include the brain. Some clinical studies have shown a positive correlation between dietary n-3 PUFA intake and sleep quantity, yet evidence is still sparse. We here used a preclinical model of dietary n-3 PUFA deficiency to assess the precise relationship between dietary PUFA intake and sleep/wake activity. Using electroencephalography (EEG)/electromyography (EMG) recordings on n-3 PUFA deficient or sufficient mice, we showed that dietary PUFA deficiency affects the architecture of sleep-wake activity and the oscillatory activity of cortical neurons during sleep. In a second part of the study, and since PUFAs are a potent modulator of inflammation, we assessed the effect of dietary n-3 PUFA deficiency on the sleep response to an inflammatory stimulus known to modulate sleep/wake activity. We injected mice with the endotoxin lipopolysaccharide (LPS) and quantified the sleep response across the following 12 h. Our results revealed that n-3 PUFA deficiency affects the sleep response in basal condition and after a peripheral immune challenge. More studies are now required aimed at deciphering the molecular mechanisms underlying the intimate relationship between n-3 PUFAs and sleep/wake activity.


Subject(s)
Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Animals , Fatty Acids , Fatty Acids, Unsaturated , Mice , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL
...