Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 394: 130148, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086458

ABSTRACT

Research on microalgae has surged due to its diverse biotechnological applications and capacity for accumulating bioactive compounds. Despite considerable advancements, microalgal cultivation remains costly, prompting efforts to reduce expenses while enhancing productivity. This study proposes a cost-effective approach through the coculture of microalgae and bacteria, exploiting mutualistic interactions. An engineered consortium of Chlorella vulgaris and Stutzerimonas stutzeri strain J3BG demonstrated biofilm-like arrangements, indicative of direct cell-to-cell interactions and metabolite exchange. Strain J3BG's enzymatic characterization revealed amylase, lipase, and protease production, sustaining mutual growth. Employing Response Surface Methodology (RSM), Artificial Neural Network (ANN), and Genetic Algorithm (GA) in a hybrid modeling approach resulted in a 2.1-fold increase in chlorophyll production. Optimized conditions included a NaNO3 concentration of 128.52 mg/l, a 1:2 (Algae:Bacteria) ratio, a 6-day cultivation period, and a pH of 5.4, yielding 10.92 ± 0.88 mg/l chlorophyll concentration.


Subject(s)
Chlorella vulgaris , Microalgae , Pseudomonas stutzeri , Chlorella vulgaris/metabolism , Chlorophyll/metabolism , Neural Networks, Computer , Bacteria/metabolism , Biotechnology/methods , Microalgae/metabolism , Biomass
2.
Chemosphere ; 308(Pt 1): 136183, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36058371

ABSTRACT

Pesticides are chemical compounds that are considered toxic to many organisms, including humans. Their elimination from polluted sites attracted the attention of Scientifics in the last decade; Among the various methods used to decontaminate pesticides from the environment, the microbial-algae consortium is a promising bioremediation technology, which implies several advantages as an eco-friendly process that generate biomass produced that could be valorized in the form of bioenergy, In this review, we will discuss the latest eco-friendly approaches using microorganisms to remediate sites contaminated by pesticides, and shows the ability of microbial, algae and their consortium to remove pesticides and the role of different enzymes in degradation processes.


Subject(s)
Microalgae , Pesticides , Biodegradation, Environmental , Decontamination , Humans , Microalgae/metabolism , Microbial Consortia , Pesticides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...