Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(35): 23454-23466, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37609874

ABSTRACT

The combination of fluorine labeling and pulsed electron-nuclear double resonance (ENDOR) is emerging as a powerful technique for obtaining structural information about proteins and nucleic acids. In this work, we explored the capability of Mims 19F ENDOR experiments on reporting intermolecular distances in trityl- and 19F-labeled DNA duplexes at three electron paramagnetic resonance (EPR) frequencies (34, 94, and 263 GHz). For spin labeling, we used the hydrophobic Finland trityl radical and hydrophilic OX063 trityl radical. Fluorine labels were introduced into two positions of a DNA oligonucleotide. The results indicated that hyperfine splittings visible in the ENDOR spectra are consistent with the most populated interspin distances between 19F and the trityl radical predicted from molecular dynamic (MD) simulations. Moreover, for some cases, ENDOR spectral simulations based on MD results were able to reproduce the conformational distribution reflected in the experimental ENDOR line broadening. Additionally, MD simulations provided more detailed information about the melting of terminal base pairs of the oligonucleotides and about the configuration of the trityls relative to a DNA end.


Subject(s)
Fluorine , Nucleic Acids , Electron Spin Resonance Spectroscopy , Spin Labels , DNA , Oligonucleotides
2.
J Magn Reson ; 353: 107491, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301045

ABSTRACT

ENDOR spectroscopy is a fundamental method to detect nuclear spins in the vicinity of paramagnetic centers and their mutual hyperfine interaction. Recently, site-selective introduction of 19F as nuclear labels has been proposed as a tool for ENDOR-based distance determination in biomolecules, complementing pulsed dipolar spectroscopy in the range of angstrom to nanometer. Nevertheless, one main challenge of ENDOR still consists of its spectral analysis, which is aggravated by a large parameter space and broad resonances from hyperfine interactions. Additionally, at high EPR frequencies and fields (⩾94 GHz/3.4 Tesla), chemical shift anisotropy might contribute to broadening and asymmetry in the spectra. Here, we use two nitroxide-fluorine model systems to examine a statistical approach to finding the best parameter fit to experimental 263 GHz 19F ENDOR spectra. We propose Bayesian optimization for a rapid, global parameter search with little prior knowledge, followed by a refinement by more standard gradient-based fitting procedures. Indeed, the latter suffer from finding local rather than global minima of a suitably defined loss function. Using a new and accelerated simulation procedure, results for the semi-rigid nitroxide-fluorine two and three spin systems lead to physically reasonable solutions, if minima of similar loss can be distinguished by DFT predictions. The approach also delivers the stochastic error of the obtained parameter estimates. Future developments and perspectives are discussed.

3.
J Phys Chem Lett ; 11(5): 1629-1635, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32003568

ABSTRACT

Polarization transfer efficiency in liquid-state dynamic nuclear polarization (DNP) depends on the interaction between polarizing agents (PAs) and target nuclei modulated by molecular motions. We show how translational and rotational diffusion differently affect the DNP efficiency. These contributions were disentangled by measuring 1H-DNP enhancements of toluene and chloroform doped with nitroxide derivatives at 0.34 T as a function of either the temperature or the size of the PA. The results were employed to analyze 13C-DNP data at higher fields, where the polarization transfer is also driven by the Fermi contact interaction. In this case, bulky nitroxide PAs perform better than the small TEMPONE radical due to structural fluctuations of the ring conformation. These findings will help in designing PAs with features specifically optimized for liquid-state DNP at various magnetic fields.

5.
Appl Magn Reson ; 43(1-2): 129-138, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22815593

ABSTRACT

Dynamic nuclear polarization (DNP) is investigated in the liquid state using a model system of Frémy's salt dissolved in water. Nuclear magnetic resonance signal enhancements at 0.34 and 3.4 T of the bulk water protons are recorded as a function of the irradiation time and the polarizer concentration. The build-up rates are consistent with the T(1n) of the observed water protons at room temperature (for 9 GHz/0.34 T) and for about 50 ± 10 °C at 94 GHz/3.4 T. At 94 GHz/3.4 T, we observe in our setup a maximal enhancement of -50 at 25 mM polarizer concentration. The use of Frémy's salt allows the determination of the saturation factors at 94 GHz by pulsed ELDOR experiments. The results are well consistent with the Overhauser DNP mechanism and indicate that higher enhancements at this intermediate frequency require higher sample temperatures.

7.
Proc Natl Acad Sci U S A ; 103(36): 13386-90, 2006 Sep 05.
Article in English | MEDLINE | ID: mdl-16938868

ABSTRACT

Class I ribonucleotide reductases (RNRs) are composed of two subunits, R1 and R2. The R2 subunit contains the essential diferric cluster-tyrosyl radical (Y.) cofactor, and R1 is the site of the conversion of nucleoside diphosphates to 2'-deoxynucleoside diphosphates. It has been proposed that the function of the tyrosyl radical in R2 is to generate a transient thiyl radical (C439.) in R1 over a distance of 35 A, which in turn initiates the reduction process. EPR distance measurements provide a tool with which to study the mechanism of radical initiation in class I RNRs. These types of experiments at low magnetic fields and frequencies (0.3 T, 9 GHz) give insight into interradical distances and populations. We present a pulsed electron-electron double resonance (PELDOR) experiment at high EPR frequency (180-GHz electron Larmor frequency) that detects the dipolar interaction between the Y.s in each protomer of RNR R2 from Escherichia coli. We observe a correlation between the orientation-dependent dipolar interaction and their resolved g-tensors. This information has allowed us to define the relative orientation of two radicals embedded in the active homodimeric protein in solution. This experiment demonstrates that high-field PELDOR spectroscopy is a powerful tool with which to study the assembly of proteins that contain multiple paramagnetic centers.


Subject(s)
Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Ribonucleotide Reductases/chemistry , Tyrosine/chemistry , Dimerization , Escherichia coli/enzymology , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Free Radicals/analysis , Kinetics , Models, Chemical , Protein Subunits/chemistry , Ribonucleotide Reductases/classification , Ribonucleotide Reductases/isolation & purification , Ribonucleotide Reductases/metabolism , Solutions/chemistry
8.
Biochemistry ; 45(1): 42-50, 2006 Jan 10.
Article in English | MEDLINE | ID: mdl-16388579

ABSTRACT

The guanine nucleotide binding protein Ras plays a central role as molecular switch in cellular signal transduction. Ras cycles between a GDP-bound "off" state and a GTP-bound "on" state. Specific oncogenic mutations in the Ras protein are found in up to 30% of all human tumors. Previous 31P NMR studies had demonstrated that in liquid solution different conformational states in the GDP-bound as well as in the GTP-bound form coexist. High-field EPR spectroscopy of the GDP complexes in solution displayed differences in the ligand sphere of the wild-type complex as compared to its oncogenic mutant Ras(G12V). Only three water ligands were found in the former with respect to four in the G12V mutant [Rohrer, M. et al. (2001) Biochemistry 40, 1884-1889]. These differences were not detected in previous X-ray structures in the crystalline state. In this paper, we employ high-frequency electron nuclear double resonance (ENDOR) spectroscopy to probe the ligand sphere of the metal ion in the GDP-bound state. This technique in combination with selective isotope labeling has enabled us to detect the resonances of nuclei in the first ligand sphere of the ion with high spectral resolution. We have observed the 17O ENDOR spectra of the water ligands, and we have accurately determined the 17O hyperfine coupling with a(iso) = -0.276 mT, supporting the results of previous line shape analysis in solution. Further, the distinct resonances of the alpha-, beta-, and gamma-phosphorus of the bound nucleotides are illustrated in the 31P ENDOR spectra, and their hyperfine tensors lead to distances in agreement with the X-ray structures. Finally, 13C ENDOR spectra of uniformly 13C-labeled Ras(wt) x GDP and Ras(G12V) x GDP complexes as well as of the Ras(wt) x GppNHp and the selectively 1,4-13C-Asp labeled Ras(wt) x GDP complexes have revealed that in frozen solution only one amino acid is ligated to the ion in the GDP state, whereas two are bound in the GppNHp complex. Our results suggest that a second conformational state of the protein, if correlated with a different ligand sphere of the Mn2+ ion, is not populated in the GDP form of Ras at low temperatures in frozen solution.


Subject(s)
Guanosine Diphosphate/chemistry , Metals/chemistry , Oncogenes , ras Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy/methods , Freezing , Glycine/genetics , Guanosine Diphosphate/metabolism , Guanylyl Imidodiphosphate/chemistry , Guanylyl Imidodiphosphate/metabolism , Humans , Isotope Labeling , Metals/metabolism , Mutation , Nucleotides/chemistry , Nucleotides/metabolism , Phosphorus/chemistry , Phosphorus/metabolism , Solutions/chemistry , Valine/genetics , Water/chemistry , ras Proteins/genetics , ras Proteins/metabolism
9.
Magn Reson Chem ; 43 Spec no.: S248-55, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16235223

ABSTRACT

Within this review, we describe a home-built pulsed electron paramagnetic resonance (EPR) spectrometer operating at 180 GHz as well as the incorporation of two double resonance techniques, electron nuclear double resonance (ENDOR) and pulsed electron double resonance (PELDOR), along with first applications. Hahn-echo decays on a TEMPO/polystyrene sample are presented, demonstrating that the observation of anisotropic librational motions is possible in a very precise manner at high magnetic fields. Bisdiphenylene-phenyl-allyl is used as a model system to illustrate the performance of the setup for 1H-ENDOR using the Mims as well as the Davies sequence. Furthermore, first 1H-Mims and Davies ENDOR spectra on a biological sample, the wild-type Ras*Mn2+*GDP protein, are reported. The capability of the 180-GHz PELDOR setup is demonstrated using the three-pulse ELDOR sequence on the protein ribonucleotide reductase (RNR) subunit R2 from Escherichia coli, which contains two tyrosyl radicals at a 33 angstroms distance. At 180 GHz, orientation selectivity is observed and the modulation frequency is found to be in good agreement with theoretical predictions.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Electron Spin Resonance Spectroscopy/methods , Cyclic N-Oxides/chemistry , Escherichia coli/enzymology , Free Radicals/chemistry , Free Radicals/metabolism , Guanosine Diphosphate/chemistry , Guanosine Diphosphate/metabolism , Manganese/chemistry , Manganese/metabolism , Polystyrenes/chemistry , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Tyrosine/chemistry , Tyrosine/metabolism , ras Proteins/chemistry , ras Proteins/metabolism
10.
J Am Chem Soc ; 123(15): 3569-76, 2001 Apr 18.
Article in English | MEDLINE | ID: mdl-11472128

ABSTRACT

High-frequency pulsed EPR and ENDOR have been employed to characterize the tyrosyl radical (Y*)-diiron cofactor in the Y2-containing R2 subunit of ribonucleotide reductase (RNR) from yeast. The present work represents the first use of 140-GHz time domain EPR and ENDOR to examine this system and demonstrates the capabilities of the method to elucidate the electronic structure and the chemical environment of protein radicals. Low-temperature spin-echo-detected EPR spectra of yeast Y* reveal an EPR line shape typical of a tyrosyl radical; however, when compared with the EPR spectra of Y* from E. coli RNR, a substantial upfield shift of the g(1)-value is observed. The origin of the shift in g(1) was investigated by 140-GHz (1)H and (2)H pulsed ENDOR experiments of the Y2-containing subunit in protonated and D(2)O-exchanged buffer. (2)H ENDOR spectra and simulations provide unambiguous evidence for one strongly coupled (2)H arising from a bond between the radical and an exchangeable proton of an adjacent residue or a water molecule. Orientation-selective 140-GHz ENDOR spectra indicate the direction of the hydrogen bond with respect to the molecular symmetry axes and the bond length (1.81 A). Finally, we have performed saturation recovery experiments and observed enhanced spin lattice relaxation rates of the Y* above 10 K. At temperatures higher than 20 K, the relaxation rates are isotropic across the EPR line, a phenomenon that we attribute to isotropic exchange interaction between Y* and the first excited paramagnetic state of the diiron cluster adjacent to it. From the activation energy of the rates, we determine the exchange interaction between the two irons of the cluster, J(exc) = -85 cm(-)(1). The relaxation mechanism and the presence of the hydrogen bond are discussed in terms of the differences in the structure of the Y*-diiron cofactor in yeast Y2 and other class I R2s.


Subject(s)
Iron Compounds/chemistry , Ribonucleotide Reductases/chemistry , Saccharomyces cerevisiae/enzymology , Tyrosine/chemistry , Deuterium , Electron Spin Resonance Spectroscopy , Protons , Recombinant Proteins/chemistry , Time Factors , Tyrosine/analogs & derivatives
11.
J Magn Reson ; 140(1): 293-9, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10479576

ABSTRACT

We describe a new triply tuned (e(-), (1)H, and (13)C) resonance structure operating at an electron Larmor frequency of 139.5 GHz for dynamic nuclear polarization (DNP) and electron nuclear double-resonance (ENDOR) experiments. In contrast to conventional double-resonance structures, the body of the microwave cavity simultaneously acts as a NMR coil, allowing for increased efficiency of radiofrequency irradiation while maintaining a high quality factor for microwave irradiation. The resonator design is ideal for low-gamma-nuclei ENDOR, where sensitivity is limited by the fact that electron spin relaxation times are on the order of the RF pulse lengths. The performance is demonstrated with (2)H ENDOR on a standard perdeuterated bis-diphenylene-phenyl-allyl stable radical. In DNP experiments, we show that the use of this resonator, combined with a low microwave power setup (17 mW), leads to significantly higher (1)H signal enhancement (epsilon approximately 400 +/- 50) than previously achieved at 5-T fields. The results emphasize the importance of optimizing the microwave B(1) field by improving either the quality factor of the microwave resonator or the microwave power level.


Subject(s)
Allyl Compounds/chemistry , Antioxidants/chemistry , Cyclic N-Oxides/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Chemical Phenomena , Chemistry, Physical , Equipment Design , Glycerol/chemistry , Microwaves , Water/chemistry
12.
Proc Natl Acad Sci U S A ; 96(16): 8979-84, 1999 Aug 03.
Article in English | MEDLINE | ID: mdl-10430881

ABSTRACT

Class I ribonucleotide reductases (RNRs) are composed of two subunits, R1 and R2. The R2 subunit contains the essential diferric cluster-tyrosyl radical (Y.) cofactor and R1 is the site of the conversion of nucleoside diphosphates to 2'-deoxynucleoside diphosphates. A mutant in the R1 subunit of Escherichia coli RNR, E441Q, was generated in an effort to define the function of E441 in the nucleotide-reduction process. Cytidine 5'-diphosphate was incubated with E441Q RNR, and the reaction was monitored by using stopped-flow UV-vis spectroscopy and high-frequency (140 GHz) time-domain EPR spectroscopy. These studies revealed loss of the Y. and formation of a disulfide radical anion and present experimental mechanistic insight into the reductive half-reaction catalyzed by RNR. These results support the proposal that the protonated E441 is required for reduction of a 3'-ketodeoxynucleotide by a disulfide radical anion. On the minute time scale, a second radical species was also detected by high-frequency EPR. Its g values suggest that this species may be a 4'-ketyl radical and is not on the normal reduction pathway. These experiments demonstrate that high-field time-domain EPR spectroscopy is a powerful new tool for deconvolution of a mixture of radical species.


Subject(s)
Cytidine Diphosphate/chemistry , Cytidine Diphosphate/metabolism , Disulfides , Escherichia coli/enzymology , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Amino Acid Substitution , Anions , Binding Sites , Electron Spin Resonance Spectroscopy/methods , Free Radicals , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrophotometry , Tyrosine
13.
J Magn Reson ; 139(2): 281-6, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10423365

ABSTRACT

High-frequency electron paramagnetic resonance (EPR) spectroscopy has been performed on a nitroxide spin-labeled peptide in fluid aqueous solution. The peptide, which follows the single letter sequence, was reacted with the methanethiosulfonate spin label at the cysteine sulfur. The spin sensitivity of high-frequency EPR is excellent with less than 20 pmol of sample required to obtain spectra with good signal-to-noise ratios. Simulation of the temperature-dependent spectral lineshapes reveals the existence of local anisotropic motion about the nitroxide N-O bond with a motional anisotropy tau( perpendicular)/tau( parallel) ( identical with N) approaching 2.6 at 306 K. Comparison with previous work on rigidly labeled peptides suggests that the spin label is reorienting about its side-chain tether. This study demonstrates the feasibility of performing 140-GHz EPR on biological samples in fluid aqueous solution.


Subject(s)
Electron Spin Resonance Spectroscopy , Peptides/chemistry , Amino Acid Sequence , Anisotropy , Protein Conformation , Spin Labels , Temperature
14.
J Magn Reson ; 138(2): 232-43, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10341127

ABSTRACT

We describe a spectrometer for pulsed ENDOR at 140 GHz, which is based on microwave IMPATT diode amplifiers and a probe consisting of a TE011 cavity with a high-quality resonance circuit for variable radiofrequency irradiation. For pulsed EPR we obtain an absolute sensitivity of 3x10(9) spins/Gauss at 20 K. The performance of the spectrometer is demonstrated with pulsed ENDOR spectra of a standard bis-diphenylene-phenyl-allyl (BDPA) doped into polystyrene and of the tyrosyl radical from E. coli ribonucleotide reductase (RNR). The EPR spectrum of the RNR tyrosyl radical displays substantial g-anisotropy at 5 T and is used to demonstrate orientation-selective Davies-ENDOR.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Ribonucleotide Reductases/chemistry , Allyl Compounds/chemistry , Anisotropy , Benzene Derivatives/chemistry , Computer Simulation , Electron Spin Resonance Spectroscopy/instrumentation , Escherichia coli/enzymology , Free Radicals , Magnetics , Polystyrenes , Protons , Radio Waves , Sensitivity and Specificity , Spectrum Analysis , Spin Labels , Transducers , Tyrosine
15.
Solid State Nucl Magn Reson ; 4(3): 153-61, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7773648

ABSTRACT

Rotational excitations of methyl groups attached to carbonyl in solid acetic acid, acetyl fluoride, acetyl chloride and acetyl bromide have been investigated by 1H nuclear magnetic resonance (NMR) relaxation times and field-cycling measurements at two frequencies and various temperatures. The tunnel splittings have been found to occur between 3.3 and 0.08 mu eV making quantum effects important for the relaxation behaviour. For the acetyl halides, similar tunnelling and NMR frequencies lead to an anomalous-looking temperature dependence of the relaxation rates. A consistent description by Haupt's equation is possible. The rotational potentials have been derived from the data and compared with those obtained from microwave spectra of the corresponding isolated molecules. The hindering potential is purely three-fold and the barrier is dominated by the functional group.


Subject(s)
Halogens/chemistry , Magnetic Resonance Spectroscopy , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...