Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Assist Reprod Genet ; 31(7): 843-50, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24771116

ABSTRACT

PURPOSE: To compare single nucleotide polymorphism (SNP) and comparative genomic hybridization (aCGH) microarray platforms to evaluate embryos for parental translocation imbalances and aneuploidy. METHODS: A retrospective review of preimplantation genetic diagnosis and screening (PGD/PGS) results of 498 embryos from 63 couples undergoing 75 in vitro fertilization cycles due to parental carriers of a reciprocal translocation. RESULTS: There was no significant difference between SNP and aCGH microarrays when comparing the prevalence of embryos that were euploid with no translocation imbalance, euploidy with a parental translocation imbalance or aneuploid with or without the parental chromosome imbalance. The clinical pregnancy rates were also equivalent for SNP (60 %) versus aCGH (65 %) microarrays. Of 498 diagnosed embryos, 45 % (226/498) were chromosomally normal without translocation errors or aneuploidy, 22 % (112/498) were euploid but had a parentally derived unbalanced chromosomal segregant, 8 % (42/498) harbored both a translocation imbalance and aneuploidy and 24 % (118/498) of embryos were genetically balanced for the parental reciprocal translocation but were aneuploid for other chromosomes. The overall clinical pregnancy rate per IVF cycle following SNP or aCGH microarray analysis was 61 % and was higher if the biopsy was done on blastocysts (65 %) versus cleavage stage embryos (59 %), although not statistically significant. CONCLUSIONS: SNP or aCGH microarray technologies demonstrate equivalent clinical findings that maximize the pregnancy potential in patients with known parental reciprocal chromosomal translocations.


Subject(s)
Aneuploidy , Genetic Testing , Microarray Analysis , Preimplantation Diagnosis , Adult , Chromosome Segregation/genetics , Comparative Genomic Hybridization , Female , Fertilization in Vitro/methods , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Rate , Translocation, Genetic
2.
Syst Biol Reprod Med ; 60(2): 119-24, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24377704

ABSTRACT

We successfully performed preimplantation genetic diagnosis (PGD) and simultaneous preimplantation genetic screening (PGS) using single nucleotide polymorphism (SNP) microarrays for couples with balanced chromosome rearrangements in China. A total of 428 molecular karyotypes were diagnosed from 62 couples undergoing 68 in vitro fertilization (IVF) cycles. Of these, 48.1% of the embryos were chromosomally normal without translocation errors or aneuploidy. Of the 428 total embryos, 18.0% embryos were euploid, but were imbalanced due to the transmission of single translocation chromosome derivatives. A total of 6.5% of the embryos had chromosome abnormalities involving the parental chromosome aberration and other chromosomes aneuploidies. Significantly, 27.4% of the embryos were normal/balanced for the rearranged chromosomes, but were abnormal due to aneuploidy affecting other chromosomes. When evaluated on a per IVF cycle basis, 84% of the cycles had at least one chromosomally normal embryo available for uterine transfer. The clinical pregnancy rate per IVF cycle was 54%. Diagnosing genomically balanced embryos through 24 chromosome SNP microarray PGD/PGS, rather than minimally targeted fluorescence in situ hybridization (FISH), is a promising strategy to maximize the pregnancy potential of patients with known parental chromosomal translocations. Moreover, this is the first study to report the clinical application of SNP arrays to screen all 24 chromosome pairs of blastomeres and trophectoderm cells from patients carrying reciprocal translocations in China.


Subject(s)
Fertilization in Vitro , Pregnancy Rate , Preimplantation Diagnosis , Translocation, Genetic , Female , Humans , Male , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...