Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 297: 122102, 2023 06.
Article in English | MEDLINE | ID: mdl-37015177

ABSTRACT

Invasive neuroprosthetics rely on microelectrodes (MEs) to record or stimulate the activity of large neuron assemblies. However, MEs are subjected to tissue reactivity in the central nervous system (CNS) due to the foreign body response (FBR) that contribute to chronic neuroinflammation and ultimately result in ME failure. An endogenous, acute set of mechanisms responsible for the recognition and targeting of foreign objects, called the innate immune response, immediately follows the ME implant-induced trauma. Inflammasomes are multiprotein structures that play a critical role in the initiation of an innate immune response following CNS injuries. The activation of inflammasomes facilitates a range of innate immune response cascades and results in neuroinflammation and programmed cell death. Despite our current understanding of inflammasomes, their roles in the context of neural device implantation remain unknown. In this study, we implanted a non-functional Utah electrode array (UEA) into the rat somatosensory cortex and studied the inflammasome signaling and the corresponding downstream effects on inflammatory cytokine expression and the inflammasome-mediated cell death mechanism of pyroptosis. Our results not only demonstrate the continuous activation of inflammasomes and their contribution to neuroinflammation at the electrode-tissue interface but also reveal the therapeutic potential of targeting inflammasomes to attenuate the FBR in invasive neuroprosthetics.


Subject(s)
Foreign Bodies , Inflammasomes , Rats , Animals , Inflammasomes/metabolism , Inflammation/metabolism , Neuroinflammatory Diseases , Microelectrodes , Immunity, Innate
2.
Front Immunol ; 13: 977809, 2022.
Article in English | MEDLINE | ID: mdl-36518766

ABSTRACT

Introduction: Extracellular vesicles isolated from human amniotic fluid (AF-EVs) have previously been found to modulate inflammation and macrophage infiltration in a mouse model. However, the effects of acellular amniotic fluid (acAF) or AF-EVs on the T-Cell immune response have not been explored. Methods: In this study, we investigated the effects of acAF and AF-EVs on the T cell immune response in an in vitro cell culture model. Peripheral Blood Mononuclear Cells (PBMCs) were stimulated with Phytohemagglutinin (PHA) to induce the immune response and were subsequently treated with either serum-free media (vehicle), acAF, or concentrated AF-EVs. Results: Both acAF and AF-EV treatment suppressed PHA-induced T cell proliferation and PHA-induced T cell activation; however, treatment with concentrated AF-EVs had a greater effect. Additionally, both acAF and AF-EVs reduced PBMC pro-inflammatory cytokine release. AF-EVs were found to be taken up by both CD4+ and CD8+ effector T cell subsets. Conclusion: Overall, this data demonstrates that AF-EVs have a robust immunomodulatory effect on T cells and suggests AF-EVs could be used as an immunotherapeutic tool.


Subject(s)
Amniotic Fluid , Extracellular Vesicles , Animals , Mice , Humans , Leukocytes, Mononuclear , Cytokines , Immunity
3.
Biomater Biosyst ; 4: 100031, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34841370

ABSTRACT

A pandemic brought on by COVID-19 has created a scalable health crisis. The search to help alleviate COVID-19-related complications through therapeutics has become a necessity. Zofin is an investigational, acellular biologic derived from full-term perinatal amniotic fluid that contains extracellular vesicles. Extracellular nanoparticles as such have been studied for their immunomodulatory benefits via cellular therapeutics and, if applied to COVID-19-related inflammation, could benefit patient outcome. Subjects (n = 8) experiencing mild-to-moderate COVID-19 symptoms were treated with the experimental intervention. Complete blood count, complete metabolic panel, inflammatory biomarkers, and absolute lymphocyte counts were recorded prior to and on days 4, 8, 14, 21, and 30 as markers of disease progression. Additionally, chest x-rays were taken of the patients prior to and on days 8 and 30. Patients experienced no serious adverse events. All COVID-19-associated symptoms resolved or became stable with no indication of disease worsening as found by patient and chest x-ray reports. Inflammatory biomarkers (CRP, IL-6, TNF- α ) and absolute lymphocyte counts improved throughout the study period. Findings from a proof-of-concept, expanded access trial for COVID-19 patients prove the acellular biologic is safe and potentially effective to prevent disease progression in a high-risk COVID-19 population with mild-to-moderate symptoms.

4.
Biomaterials ; 268: 120583, 2021 01.
Article in English | MEDLINE | ID: mdl-33310540

ABSTRACT

Devices implanted within the central nervous system (CNS) are subjected to tissue reactivity due to the lack of biocompatibility between implanted material and the cells' microenvironment. Studies have attributed blood-brain barrier disruption, inflammation, and oxidative stress as main contributing factors that lead to electrode recording failure. The complement cascade is a part of the innate immunity that focuses on recognizing and targeting foreign objects; however, its role in the context of neural implants is substantially unknown. In this study, we implanted a non-functional 4x4 Utah microelectrode array (UEA) into the somatosensory cortex and studied the complement cascade via combined gene and immunohistochemistry quantification at acute (48-h), sub-acute (1-week), and early chronic (4-weeks) time points. The results of this study demonstrate the activation and continuation of the complement cascade at the electrode-tissue interface, illustrating the therapeutic potential of modulating the foreign body response via the complement cascade.


Subject(s)
Foreign Bodies , Inflammation , Electrodes, Implanted , Humans , Microelectrodes , Utah
5.
J Neural Eng ; 17(2): 026035, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32240985

ABSTRACT

OBJECTIVE: Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACH: A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTS: The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCE: This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation.


Subject(s)
Hypothermia, Induced , Inflammation , Animals , Electrodes, Implanted , Inflammation/prevention & control , Male , Microelectrodes , Rats , Rats, Sprague-Dawley , Utah
6.
ACS Appl Bio Mater ; 3(7): 4613-4625, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-35025460

ABSTRACT

Brain machine interfaces (BMIs), introduced into the daily lives of individuals with injuries or disorders of the nervous system such as spinal cord injury, stroke, or amyotrophic lateral sclerosis, can improve the quality of life. BMIs rely on the capability of microelectrode arrays to monitor the activity of large populations of neurons. However, maintaining a stable, chronic electrode-tissue interface that can record neuronal activity with a high signal-to-noise ratio is a key challenge that has limited the translation of such technologies. An electrode implant injury leads to a chronic foreign body response that is well-characterized and shown to affect the electrode-tissue interface stability. Several strategies have been applied to modulate the immune response, including the application of immunomodulatory drugs applied both systemically and locally. While the use of passive drug release at the site of injury has been exploited to minimize neuroinflammation, this strategy has all but failed as a bolus of anti-inflammatory drugs is released at predetermined times that are often inconsistent with the ongoing innate inflammatory process. Common strategies do not focus on the proper anchorage of soft hydrogel scaffolds on electrode surfaces, which often results in delamination of the porous network from electrodes. In this study, we developed a microwire platform that features a robust yet soft biocompatible hydrogel coating, enabling long-lasting drug release via formation of drug aggregates and dismantlement of hydrophilic biodegradable three-dimensional polymer networks. Facile surface chemistry is developed to functionalize polyimide-coated electrodes with the covalently anchored porous hydrogel network bearing large numbers of highly biodegradable ester groups. Exponential long-lasting drug release is achieved using such hydrogels. We show that the initial state of dexamethasone (Dex) used to formulate the hydrogel precursor solution plays a cardinal role in engineering hydrophilic networks that enable a sustained and long-lasting release of the anti-inflammatory agent. Furthermore, utilization of a high loading ratio that exceeds the solubility of Dex leads to the encapsulation of Dex aggregates that regulate the release of this anti-inflammatory agent. To validate the anti-inflammatory effect of the hydrogel-functionalized Dex-loaded microwires, an in vivo preliminary study was performed in adult male rats (n = 10) for the acute time points of 48 h and 7 days post implant. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the mRNA expression of certain inflammatory-related genes. In general, a decrease in fold-change expression was observed for all genes tested for Dex-loaded wires compared with controls (functionalized but no drug). The engineering of hybrid microwires enables a sustained release of the anti-inflammatory agent over extended periods of time, thus paving the way to fabricate neuroprosthetic devices capable of attenuating the foreign body response.

7.
Biomaterials ; 188: 144-159, 2019 01.
Article in English | MEDLINE | ID: mdl-30343257

ABSTRACT

The use of intracortical microelectrode arrays has gained significant attention in being able to help restore function in paralysis patients and study the brain in various neurological disorders. Electrode implantation in the cortex causes vasculature or blood-brain barrier (BBB) disruption and thus elicits a foreign body response (FBR) that results in chronic inflammation and may lead to poor electrode performance. In this study, a comprehensive insight into the acute molecular mechanisms occurring at the Utah electrode array-tissue interface is provided to understand the oxidative stress, neuroinflammation, and neurovascular unit (astrocytes, pericytes, and endothelial cells) disruption that occurs following microelectrode implantation. Quantitative real time polymerase chain reaction (qRT-PCR) was used to quantify the gene expression at acute time-points of 48-hr, 72-hr, and 7-days for factors mediating oxidative stress, inflammation, and BBB disruption in rats implanted with a non-functional 4 × 4 Utah array in the somatosensory cortex. During vascular disruption, free iron released into the brain parenchyma can exacerbate the FBR, leading to oxidative stress and thus further contributing to BBB degradation. To reduce the free iron released into the brain tissue, the effects of an iron chelator, deferoxamine mesylate (DFX), was also evaluated.


Subject(s)
Blood-Brain Barrier/pathology , Deferoxamine/therapeutic use , Electrodes, Implanted/adverse effects , Foreign Bodies/drug therapy , Foreign Bodies/etiology , Iron Chelating Agents/therapeutic use , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Foreign Bodies/metabolism , Foreign Bodies/pathology , Inflammation/drug therapy , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Male , Oxidative Stress/drug effects , Rats, Sprague-Dawley
8.
Biomaterials ; 164: 1-10, 2018 05.
Article in English | MEDLINE | ID: mdl-29477707

ABSTRACT

Chronically implanted microelectrodes in the neural tissue elicit inflammatory responses that are time varying and have been shown to depend on multiple factors. Among these factors, blood brain barrier (BBB)-disruption has been hypothesized as one of the dominant factors resulting in electrode failure. A series of events that includes BBB and cell-membrane disruption occurs during electrode implantation that triggers multiple biochemical cascades responsible for microglial and astroglial activation, hemorrhage, edema, and release of pro-inflammatory neurotoxic cytokines that causes neuronal degeneration and dysfunction. Typically, microwire arrays and silicon probes are inserted slowly into the neural tissue whereas the silicon Utah MEAs (UMEA) are inserted at a high speed using a pneumatic inserter. In this work, we report the sequelae of electrode-implant induced cortical injury at various acute time points in UMEAs implanted in the brain tissue by quantifying the expression profile for key genes mediating the inflammatory response and tight junction (TJ) and adherens junction (AJ) proteins that form the BBB and are critical to the functioning of the BBB. Our results indicated upregulation of most pro-inflammatory genes relative to naïve controls for all time points. Expression levels for the genes that form the TJ and AJ were downregulated suggestive of BBB-dysfunction. Moreover, there was no significant difference between stab and implant groups suggesting the effects of UMEA insertion-related trauma in the brain tissue. Our results provide an insight into the physiological events related to neuroinflammation and BBB-disruption occurring at acute time-points following insertion of UMEAs.


Subject(s)
Blood-Brain Barrier , Electrodes, Implanted , Microelectrodes , Silicon , Animals , Biological Transport , Blood-Brain Barrier/physiology , Brain/metabolism , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...