Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acc Chem Res ; 54(5): 1067-1079, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33554606

ABSTRACT

ConspectusLaboratory-based experimental astrochemistry regularly entails simulation of astrophysical environments whereby low-temperature condensed ices are exposed to radiation from ultraviolet (UV) photons or energetic charged particles. Here, excited atoms/radicals are generated that are not in thermal equilibrium with their surroundings (i.e., they are nonthermal, or suprathermal). These species can surpass typical reaction barriers and partake in unusual chemical processes leading to novel molecular species. Often, these are uniquely observable under low-temperature conditions where the surrounding ice matrix can stabilize excited intermediates that would otherwise fall apart. Fourier-transform infrared (FTIR) spectroscopy is traditionally utilized to monitor the evolution of chemical species within ices in situ during radiolysis. Yet, the characterization and quantification of novel species and radicals formed within astrophysical ices is often hindered since many of these cannot be synthesized by traditional synthetic chemistry. Computational approaches can provide fundamental vibrational frequencies and isotopic shifts to help aid in assignments alongside infrared intensities and Raman activities to quantify levels of production. In this Account, we begin with a brief history and background regarding the composition and radiation of interstellar ices. We review details of some of the early work on carbon oxides produced during the radiolysis of pure carbon dioxide ices and contention around the carrier of an absorption feature that could potentially be a product of radiation. We then provide an overview of current and emerging experimental methodologies and some of the chemistries that occur via nonthermal processes during radiolysis of low-temperature ices. Next, we detail computational approaches to reliably predict vibrational frequencies, infrared intensities, and Raman activities based on our recent work. Our focus then turns to studies on the formation of complex organics and carbon oxides, highlighting those aided by computational approaches and their role in astrochemistry. Some recent controversies regarding assignments alongside our recent results on the characterization of novel carbon oxide species are discussed. We present an argument for the potential role of carbon oxides within cometary ices as parent molecular species for small volatiles. We provide an overview of some of the complex organic species that can be formed within interstellar and cometary ices that contain either carbon monoxide or carbon dioxide. We examine how Raman spectroscopy could potentially be leveraged to help determine and characterize carbon oxides in future experiments as well as how computational approaches can aid in these assignments. We conclude with brief remarks on future directions our research group is taking to unravel astrochemically relevant carbon oxides using combined computational and experimental approaches.

2.
Chembiochem ; 19(18): 1913-1917, 2018 09 17.
Article in English | MEDLINE | ID: mdl-29959812

ABSTRACT

The formation of alanine and glycine oligomers in films produced by drying aqueous mixtures of lactic acid and silica nanoparticles has been studied as a model prebiotic reaction. The addition of silica results in alanine or glycine enrichment in the polymers. Oligomerization proceeds through ester-mediated peptide bond formation in an acidic and evaporative environment at temperatures as low as 85 °C. For both amino acids, the dominant species produced in the presence of silica and lactic acid are rich in amide bonds and deficient in ester linkages. At higher temperatures, glycine and alanine oligomers contain only a single hydroxy acid residue conjugated to the peptide N terminus. Similar product distributions occur with silica particles prereacted with lactic acid, which suggests the catalytic role of a functionalized surface. This work highlights the role minerals might have served in transitioning from oligomers with both ester and amide linkages (depsipeptides) to peptides in a prebiotic context.


Subject(s)
Amides/chemistry , Amino Acids/chemistry , Hydroxy Acids/chemistry , Origin of Life , Peptides/chemistry , Silicon Dioxide/chemistry , Catalysis , Depsipeptides/chemistry , Esters/chemistry , Evolution, Chemical , Hot Temperature , Surface Properties
3.
Radiographics ; 32(5): 1399-420, 2012.
Article in English | MEDLINE | ID: mdl-22977027

ABSTRACT

Valvular disease is estimated to account for as many as 20% of cardiac surgical procedures performed in the United States. It may be congenital in origin or secondary to another disease process. One congenital anomaly, bicuspid aortic valve, is associated with increased incidence of stenosis, regurgitation, endocarditis, and aneurysmal dilatation of the aorta. A bicuspid valve has two cusps instead of the normal three; resultant fusion or poor excursion of the valve leaflets may lead to aortic stenosis, the presence of which is signaled by dephasing jets on magnetic resonance (MR) images. Surgery is generally recommended for patients with severe stenosis who are symptomatic or who have significant ventricular dysfunction; transcatheter aortic valve implantation (TAVI) is an emerging therapeutic option for patients who are not eligible for surgical treatment. Computed tomography (CT) is an essential component of preoperative planning for TAVI; it is used to determine the aortic root dimensions, severity of peripheral vascular disease, and status of the coronary arteries. Aortic regurgitation, which is caused by incompetent closure of the aortic valve, likewise leads to the appearance of jets on MR images. The severity of regurgitation is graded on the basis of valvular morphologic parameters; qualitative assessment of dephasing jets at Doppler ultrasonography; or measurements of the regurgitant fraction, volume, and orifice area. Mild regurgitation is managed conservatively, whereas severe or symptomatic regurgitation usually leads to valve replacement surgery, especially in the presence of substantial left ventricular enlargement or dysfunction. Bacterial endocarditis, although less common than aortic stenosis and regurgitation, is associated with substantial morbidity and mortality. Electrocardiographically gated CT reliably demonstrates infectious vegetations and benign excrescences of 1 cm or more on the valve surface, allowing the assessment of any embolic complications.


Subject(s)
Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Heart Valve Diseases/diagnosis , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Statistics as Topic , Young Adult
4.
Bioorg Med Chem ; 12(9): 2079-98, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15080911

ABSTRACT

The flavonol myricetin, reacts with oxygen-centred galvinoxyl radicals 28 times faster than d-alpha-tocopherol (vitamin E), the main lipid-soluble antioxidant in biological membranes. Moreover, each myricetin molecule reduces twice as many such radicals as vitamin E. However, myricetin fails to protect vitamin E-deficient microsomes from lipid peroxidation as assessed by the formation of thiobarbituric acid reactive substances (TBARS). Novel and potentially therapeutic antioxidants have been prepared that combine the radical-scavenging ability of a myricetin-like head group with a lipophilic chain similar to that of vitamin E. C(6)-C(12) alkyl chains are attached to the A-ring of either a 3,3',4',5'-tetrahydroxyflavone or a 3,2',4',5'-tetrahydroxyflavone head group to give lipophilic flavonoids (C log P = 4 to 10) that markedly inhibit iron-ADP catalysed oxidation of microsomal preparations. Orientation of the head group as well as total lipophilicity are important determinants of antioxidant efficacy. MM2 models indicate that our best straight chain 7-alkylflavonoids embed to the same depth in the membrane as vitamin E. The flavonoid head groups are prepared by aldol condensation followed by Algar-Flynn-Oyamada (AFO) oxidation or by Baker-Venkataraman rearrangement. The alkyl tails are introduced by Suzuki or Negishi palladium-catalysed cross-coupling or by cross-metathesis catalysed by first generation Grubbs catalyst, which tolerate phenolic hydroxyl and ketone groups.


Subject(s)
Antioxidants/pharmacology , Flavonoids/pharmacology , Free Radical Scavengers/pharmacology , Lipid Peroxidation/drug effects , Microsomes/drug effects , Vitamin E/chemistry , Antioxidants/chemistry , Flavonoids/chemistry , Free Radical Scavengers/chemistry , Mass Spectrometry
5.
Trustee ; 57(3): 12-4, 19-20, 1, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15045903

ABSTRACT

Under increasing public scrutiny, not-for-profit boards are pressured, in turn, to take a harder look at how they compensate executives. Now is the time to establish a process and protocols for approving appropriate pay.


Subject(s)
Chief Executive Officers, Hospital/economics , Employee Incentive Plans , Governing Board , Hospitals, Voluntary/organization & administration , Salaries and Fringe Benefits , Hospitals, Voluntary/economics , Organizational Policy , Professional Staff Committees , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...