Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(13): 11024-11052, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38924388

ABSTRACT

Oncogenic mutations in the RAS gene account for 30% of all human tumors; more than 60% of which present as KRAS mutations at the hotspot codon 12. After decades of intense pursuit, a covalent inhibition strategy has enabled selective targeting of this previously "undruggable" target. Herein, we disclose our journey toward the discovery of MK-1084, an orally bioavailable and low-dose KRASG12C covalent inhibitor currently in phase I clinical trials (NCT05067283). We leveraged structure-based drug design to identify a macrocyclic core structure, and hypothesis-driven optimization of biopharmaceutical properties to further improve metabolic stability and tolerability.


Subject(s)
Drug Discovery , Proto-Oncogene Proteins p21(ras) , Animals , Dogs , Humans , Mice , Rats , Administration, Oral , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Biological Availability , Dose-Response Relationship, Drug , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Structure-Activity Relationship
2.
RSC Med Chem ; 14(12): 2611-2624, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38099057

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer in adults, with an average life expectancy under treatment of approx. 15 months. GBM is characterised by a complex set of genetic alterations that results in significant disruption of receptor tyrosine kinase (RTK) signaling. We report here an exploration of the pyrazolo[3,4-d]pyrimidine scaffold in search for antiproliferative compounds directed to GBM treatment. Small compound libraries were synthesised and screened against GBM cells to build up structure-antiproliferative activity-relationships (SAARs) and inform further rounds of design, synthesis and screening. 76 novel compounds were generated through this iterative process that found low micromolar potencies against selected GBM lines, including patient-derived stem cells. Phenomics analysis demonstrated preferential activity against glioma cells of the mesenchymal subtype, whereas kinome screening identified colony stimulating factor-1 receptor (CSF-1R) as the lead's target, a RTK implicated in the tumourigenesis and progression of different cancers and the immunoregulation of the GBM microenvironment.

3.
J Med Chem ; 66(21): 14912-14927, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37861679

ABSTRACT

Genetic mutation of the leucine-rich repeat kinase 2 (LRRK2) protein has been associated with Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder that is devoid of efficacious disease-modifying therapies. Herein, we describe the invention of an amidoisoquinoline (IQ)-derived LRRK2 inhibitor lead chemical series. Knowledge-, structure-, and property-based drug design in concert with rigorous application of in silico calculations and presynthesis predictions enabled the prioritization of molecules with favorable CNS "drug-like" physicochemical properties. This resulted in the discovery of compound 8, which was profiled extensively before human ether-a-go-go (hERG) ion channel inhibition halted its progression. Strategic reduction of lipophilicity and basicity resulted in attenuation of hERG ion channel inhibition while maintaining a favorable CNS efflux transporter profile. Further structure- and property-based optimizations resulted in the discovery of preclinical candidate MK-1468. This exquisitely selective LRRK2 inhibitor has a projected human dose of 48 mg BID and a preclinical safety profile that supported advancement toward GLP toxicology studies.


Subject(s)
Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Brain/metabolism , Mutation , Ion Channels/metabolism
4.
J Am Chem Soc ; 145(5): 3092-3100, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36696089

ABSTRACT

The replacement of aryl rings with saturated carbocyclic structures has garnered significant interest in drug discovery due to the potential for improved pharmacokinetic properties upon substitution. In particular, 1,3-difunctionalized bicyclo[1.1.1]pentanes (BCPs) have been widely adopted as bioisosteres for parasubstituted arene rings, appearing in a number of lead pharmaceutical candidates. However, despite the pharmaceutical value of 2-substituted BCPs as replacements for ortho- or meta-substituted arene rings, general and rapid syntheses of these scaffolds remain elusive. Current approaches to 2-substituted BCPs rely on installation of the bridge substituent prior to BCP core construction, leading to lengthy step counts and often nonmodular sequences. While challenging, direct functionalization of the strong bridge BCP C-H bonds would offer a more streamlined pathway to diverse 2-substituted BCPs. Here, we report a generalizable synthetic linchpin strategy for bridge functionalization via radical C-H abstraction of the BCP core. Through mild generation of a strong hydrogen atom abstractor, we rapidly synthesize novel 2-substituted BCP synthetic linchpins in one pot. These synthetic linchpins then serve as common precursors to complex 2-substituted BCPs, allowing one-step access to a number of previously inaccessible electrophile and nucleophile fragments at the 2-position via two new metallaphotoredox protocols. Altogether, this platform enables the expedient synthesis of four pharmaceutical analogues, all of which show similar or improved properties compared to their aryl-containing equivalents, demonstrating the potential of these 2-substituted BCPs in drug development.

5.
J Med Chem ; 65(24): 16801-16817, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36475697

ABSTRACT

Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.


Subject(s)
Parkinson Disease , Rats , Humans , Animals , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease/drug therapy , Indazoles/pharmacology , Indazoles/therapeutic use , Leukocytes, Mononuclear/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Brain/metabolism , Adenosine Triphosphate
6.
J Med Chem ; 65(8): 6001-6016, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35239336

ABSTRACT

3,3-Disubstituted oxetanes have been utilized as bioisosteres for gem-dimethyl and cyclobutane functionalities. We report the discovery of a novel class of oxetane indole-amine 2,3-dioxygenase (IDO1) inhibitors suitable for Q3W (once every 3 weeks) oral and parenteral dosing. A diamide class of IDO inhibitors was discovered through an automated ligand identification system (ALIS). Installation of an oxetane and fluorophenyl dramatically improved the potency. Identification of a biaryl moiety as an unconventional amide isostere addressed the metabolic liability of amide hydrolysis. Metabolism identification (Met-ID)-guided target design and the introduction of polarity resulted in the discovery of potent IDO inhibitors with excellent pharmacokinetic (PK) profiles in multiple species. To enable rapid synthesis of the key oxetane intermediate, a novel oxetane ring cyclization was also developed, as well as optimization of a literature route on kg scale. These IDO inhibitors may enable unambiguous proof-of-concept testing for the IDO1 inhibition mechanism for oncology.


Subject(s)
Enzyme Inhibitors , Ethers, Cyclic , Amides , Cyclization , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
7.
J Med Chem ; 65(7): 5675-5689, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35332774

ABSTRACT

Stereochemically and structurally complex cyclic dinucleotide-based stimulator of interferon genes (STING) agonists were designed and synthesized to access a previously unexplored chemical space. The assessment of biochemical affinity and cellular potency, along with computational, structural, and biophysical characterization, was applied to influence the design and optimization of novel STING agonists, resulting in the discovery of MK-1454 as a molecule with appropriate properties for clinical development. When administered intratumorally to immune-competent mice-bearing syngeneic tumors, MK-1454 exhibited robust tumor cytokine upregulation and effective antitumor activity. Tumor shrinkage in mouse models that are intrinsically resistant to single-agent therapy was further enhanced when treating the animals with MK-1454 in combination with a fully murinized antimouse PD-1 antibody, mDX400. These data support the development of STING agonists in combination with pembrolizumab (humanized anti-PD-1 antibody) for patients with tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 therapy.


Subject(s)
Membrane Proteins , Neoplasms , Animals , Cytokines , Humans , Immunotherapy/methods , Interferons , Mice , Neoplasms/drug therapy
8.
J Med Chem ; 65(1): 838-856, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34967623

ABSTRACT

The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder whose current therapies are limited in scope and efficacy. In this report, we describe a rigorous hit-to-lead optimization campaign supported by structural enablement, which culminated in the discovery of brain-penetrant, candidate-quality molecules as represented by compounds 22 and 24. These compounds exhibit remarkable selectivity against the kinome and offer good oral bioavailability and low projected human doses. Furthermore, they showcase the implementation of stereochemical design elements that serve to enable a potency- and selectivity-enhancing increase in polarity and hydrogen bond donor (HBD) count while maintaining a central nervous system-friendly profile typified by low levels of transporter-mediated efflux and encouraging brain penetration in preclinical models.


Subject(s)
Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/pharmacology , Brain/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Antiparkinson Agents/pharmacokinetics , Biological Availability , Drug Design , Humans , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacokinetics , Structure-Activity Relationship
9.
Mol Cancer Ther ; 21(2): 282-293, 2022 02.
Article in English | MEDLINE | ID: mdl-34815361

ABSTRACT

The innate immune agonist STING (STimulator of INterferon Genes) binds its natural ligand 2'3'-cGAMP (cyclic guanosine-adenosine monophosphate) and initiates type I IFN production. This promotes systemic antigen-specific CD8+ T-cell priming that eventually provides potent antitumor activity. To exploit this mechanism, we synthesized a novel STING agonist, MSA-1, that activates both mouse and human STING with higher in vitro potency than cGAMP. Following intratumoral administration of MSA-1 to a panel of syngeneic mouse tumors on immune-competent mice, cytokine upregulation and its exposure were detected in plasma, other tissues, injected tumors, and noninjected tumors. This was accompanied by effective antitumor activity. Mechanistic studies in immune-deficient mice suggested that antitumor activity of intratumorally dosed STING agonists is in part due to necrosis and/or innate immune responses such as TNF-α activity, but development of a robust adaptive antitumor immunity is necessary for complete tumor elimination. Combination with PD-1 blockade in anti-PD-1-resistant murine models showed that MSA-1 may synergize with checkpoint inhibitors but can also provide superior tumor control as a single agent. We show for the first time that potent cyclic dinucleotides can promote a rapid and stronger induction of the same genes eventually regulated by PD-1 blockade. This may have contributed to the relatively early tumor control observed with MSA-1. Taken together, these data strongly support the development of STING agonists as therapy for patients with aggressive tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 treatment by enhancing the anti-PD-1 immune profile.


Subject(s)
Immunity, Innate/immunology , Immunotherapy/methods , Interferons/metabolism , Neoplasms/immunology , Animals , Cell Line, Tumor , Female , Humans , Mice
10.
ACS Med Chem Lett ; 12(9): 1435-1440, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34531952

ABSTRACT

Herein the discovery of potent IDO1 inhibitors with low predicted human dose is discussed. Metabolite identification (MetID) and structural data were used to strategically incorporate cyclopropane rings into this tetrahydronaphthyridine series of IDO1 inhibitors to improve their metabolic stability and potency. Enabling synthetic chemistry was developed to construct these unique fused cyclopropyl compounds, leading to inhibitors with improved pharmacokinetics and human whole blood potency and a predicted human oral dose as low as 9 mg once daily (QD).

11.
Bioorg Med Chem Lett ; 47: 128214, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34166782

ABSTRACT

A novel series of IDO1 inhibitors have been identified with good IDO1 Hela cell and human whole blood activity. These inhibitors contain an indoline or a 3-azaindoline scaffold. Their structure-activity-relationship studies have been explored. Compounds 37 and 41 stood out as leads due to their good potency in IDO1 Hela assay, good IDO1 unbound hWB IC50s, reasonable unbound clearance, and good MRT in rat and dog PK studies.


Subject(s)
Aza Compounds/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacology , Animals , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Dogs , Dose-Response Relationship, Drug , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoles/chemical synthesis , Indoles/chemistry , Male , Molecular Structure , Rats , Rats, Wistar , Structure-Activity Relationship
12.
ACS Med Chem Lett ; 12(3): 389-396, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33738066

ABSTRACT

Indoleamine-2,3-dioxygenase-1 (IDO1) has emerged as an attractive target for cancer immunotherapy. An automated ligand identification system screen afforded the tetrahydroquinoline class of novel IDO1 inhibitors. Potency and pharmacokinetic (PK) were key issues with this class of compounds. Structure-based drug design and strategic incorporation of polarity enabled the rapid improvement on potency, solubility, and oxidative metabolic stability. Metabolite identification studies revealed that amide hydrolysis in the D-pocket was the key clearance mechanism for this class. Strategic survey of amide isosteres revealed that carbamates and N-pyrimidines, which maintained exquisite potencies, mitigated the amide hydrolysis issue and led to an improved rat PK profile. The lead compound 28 is a potent IDO1 inhibitor, with clean off-target profiles and the potential for quaque die dosing in humans.

13.
Science ; 369(6506)2020 08 21.
Article in English | MEDLINE | ID: mdl-32820094

ABSTRACT

Pharmacological activation of the STING (stimulator of interferon genes)-controlled innate immune pathway is a promising therapeutic strategy for cancer. Here we report the identification of MSA-2, an orally available non-nucleotide human STING agonist. In syngeneic mouse tumor models, subcutaneous and oral MSA-2 regimens were well tolerated and stimulated interferon-ß secretion in tumors, induced tumor regression with durable antitumor immunity, and synergized with anti-PD-1 therapy. Experimental and theoretical analyses showed that MSA-2 exists as interconverting monomers and dimers in solution, but only dimers bind and activate STING. This model was validated by using synthetic covalent MSA-2 dimers, which were potent agonists. Cellular potency of MSA-2 increased upon extracellular acidification, which mimics the tumor microenvironment. These properties appear to underpin the favorable activity and tolerability profiles of effective systemic administration of MSA-2.


Subject(s)
Antineoplastic Agents/pharmacology , Membrane Proteins/metabolism , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Humans
14.
ACS Med Chem Lett ; 11(8): 1548-1554, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32832022

ABSTRACT

Indoleamine-2,3-dioxygenase 1 (IDO1) inhibition and its combination with immune checkpoint inhibitors like pembrolizumab have drawn considerable attention from both academia and the pharmaceutical industry. Here, we describe the discovery of a novel class of highly potent IDO1 heme-displacing inhibitors featuring a unique bicyclo[1.1.1]pentane motif. Compound 1, evolving from an ALIS (automated ligand identification system) hit, exhibited excellent potency but lacked the desired pharmacokinetic profile due to extensive amide hydrolysis of the benzamide moiety. Replacing the central phenyl ring in 1 with a bicyclo[1.1.1]pentane bioisostere effectively circumvented the amide hydrolysis issue, resulting in the discovery of compound 2 with a favorable overall profile such as excellent potency, selectivity, pharmacokinetics, and a low predicted human dose.

15.
ACS Med Chem Lett ; 11(4): 550-557, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32292563

ABSTRACT

Indoleamine-2,3-dioxygenase-1 (IDO1) has emerged as a target of significant interest to the field of cancer immunotherapy, as the upregulation of IDO1 in certain cancers has been linked to host immune evasion and poor prognosis for patients. In particular, IDO1 inhibition is of interest as a combination therapy with immune checkpoint inhibition. Through an Automated Ligand Identification System (ALIS) screen, a diamide class of compounds was identified as a promising lead for the inhibition of IDO1. While hit 1 possessed attractive cell-based potency, it suffered from a significant right-shift in a whole blood assay, poor solubility, and poor pharmacokinetic properties. Through a physicochemical property-based approach, including a focus on lowering AlogP98 via the strategic introduction of polar substitution, compound 13 was identified bearing a pyridyl oxetane core. Compound 13 demonstrated improved whole blood potency and solubility, and an improved pharmacokinetic profile resulting in a low predicted human dose.

16.
ACS Med Chem Lett ; 10(11): 1530-1536, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749906

ABSTRACT

Checkpoint inhibitors have demonstrated unprecedented efficacy and are evolving to become standard of care for certain types of cancers. However, low overall response rates often hamper the broad utility and potential of these breakthrough therapies. Combination therapy strategies are currently under intensive investigation in the clinic, including the combination of PD-1/PD-L1 agents with IDO1 inhibitors. Here, we report the discovery of a class of IDO1 heme-binding inhibitors featuring a unique amino-cyclobutarene motif, which was discovered through SBDD from a known and weakly active inhibitor. Subsequent optimization efforts focused on improving metabolic stability and were greatly accelerated by utilizing a robust SNAr reaction of a facile nitro-furazan intermediate to quickly explore different polar side chains. As a culmination of these efforts, compound 16 was identified and demonstrated a favorable overall profile with superior potency and selectivity. Extensive studies confirmed the chemical stability and drug-like properties of compound 16, rendering it a potential drug candidate.

17.
ChemMedChem ; 10(2): 245-52, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25469982

ABSTRACT

Developing new antiretroviral therapies for HIV-1 infection with potential for less frequent dosing represents an important goal within drug discovery. Herein, we present the discovery of ethyl (1-((4-((4-fluorobenzyl)carbamoyl)-1-methyl-2-(2-(5-methyl- 1,3,4-oxadiazole-2-carboxamido)propan-2-yl)-6-oxo-1,6-dihydropyrimidin-5-yl)oxy)ethyl) carbonate (MK-8970), a highly optimized prodrug of raltegravir (Isentress). Raltegravir is a small molecule HIV integrase strand-transfer inhibitor approved for the treatment of HIV infection with twice-daily administration. Two classes of prodrugs were designed to have enhanced colonic absorption, and derivatives were evaluated in pharmacokinetic studies, both in vitro and in vivo in different species, ultimately leading to the identification of MK-8970 as a suitable candidate for development as an HIV therapeutic with the potential to require less frequent administration while maintaining the favorable efficacy, tolerability, and minimal drug-drug interaction profile of raltegravir.


Subject(s)
HIV Integrase Inhibitors/chemistry , Oxadiazoles/chemistry , Prodrugs/chemistry , Pyrimidinones/chemistry , Pyrrolidinones/chemistry , Acetals/chemistry , Animals , Area Under Curve , Carbonates/chemistry , Dogs , Drug Evaluation, Preclinical , HIV Integrase/chemistry , HIV Integrase/metabolism , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/pharmacokinetics , HIV-1/enzymology , Half-Life , Hepatocytes/metabolism , Humans , Intestinal Mucosa/metabolism , Male , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacokinetics , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacokinetics , ROC Curve , Raltegravir Potassium , Rats , Rats, Wistar , Structure-Activity Relationship
18.
Pharmaceuticals (Basel) ; 7(2): 207-19, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24566521

ABSTRACT

Prodrugs are chemistry-enabled drug delivery modifications of active molecules designed to enhance their pharmacokinetic, pharmacodynamic and/or biopharmaceutical properties. Ideally, prodrugs are efficiently converted in vivo, through chemical or enzymatic transformations, to the active parent molecule. The goal of this work is to enhance the colonic absorption of a drug molecule with a short half-life via a prodrug approach to deliver sustained plasma exposure and enable once daily (QD) dosing. The compound has poor absorption in the colon and by the addition of a promoiety to block the ionization of the molecule as well as increase lipophilicity, the relative colonic absorption increased from 9% to 40% in the retrograde dog colonic model. A combination of acceptable solubility and stability in the gastrointestinal tract (GI) as well as permeability was used to select suitable prodrugs to optimize colonic absorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...