Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.066
Filter
1.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38804879

ABSTRACT

Dorsal interneurons (dIs) in the spinal cord encode the perception of touch, pain, heat, itchiness and proprioception. Previous studies using genetic strategies in animal models have revealed important insights into dI development, but the molecular details of how dIs arise as distinct populations of neurons remain incomplete. We have developed a resource to investigate dI fate specification by combining a single-cell RNA-Seq atlas of mouse embryonic stem cell-derived dIs with pseudotime analyses. To validate this in silico resource as a useful tool, we used it to first identify genes that are candidates for directing the transition states that lead to distinct dI lineage trajectories, and then validated them using in situ hybridization analyses in the developing mouse spinal cord in vivo. We have also identified an endpoint of the dI5 lineage trajectory and found that dIs become more transcriptionally homogeneous during terminal differentiation. This study introduces a valuable tool for further discovery about the timing of gene expression during dI differentiation and demonstrates its utility in clarifying dI lineage relationships.


Subject(s)
Cell Differentiation , Cell Lineage , Gene Expression Regulation, Developmental , Interneurons , Spinal Cord , Animals , Mice , Spinal Cord/metabolism , Spinal Cord/embryology , Cell Lineage/genetics , Interneurons/metabolism , Interneurons/cytology , Cell Differentiation/genetics , Single-Cell Analysis , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , RNA-Seq
2.
EMBO Rep ; 25(5): 2202-2219, 2024 May.
Article in English | MEDLINE | ID: mdl-38600346

ABSTRACT

Neural progenitor cells within the cerebral cortex undergo a characteristic switch between symmetric self-renewing cell divisions early in development and asymmetric neurogenic divisions later. Yet, the mechanisms controlling this transition remain unclear. Previous work has shown that early but not late neural progenitor cells (NPCs) endogenously express the autism-linked transcription factor Foxp1, and both loss and gain of Foxp1 function can alter NPC activity and fate choices. Here, we show that premature loss of Foxp1 upregulates transcriptional programs regulating angiogenesis, glycolysis, and cellular responses to hypoxia. These changes coincide with a premature destabilization of HIF-1α, an elevation in HIF-1α target genes, including Vegfa in NPCs, and precocious vascular network development. In vitro experiments demonstrate that stabilization of HIF-1α in Foxp1-deficient NPCs rescues the premature differentiation phenotype and restores NPC maintenance. Our data indicate that the endogenous decline in Foxp1 expression activates the HIF-1α transcriptional program leading to changes in the tissue environment adjacent to NPCs, which, in turn, might alter their self-renewal and neurogenic capacities.


Subject(s)
Cerebral Cortex , Forkhead Transcription Factors , Hypoxia-Inducible Factor 1, alpha Subunit , Neural Stem Cells , Repressor Proteins , Signal Transduction , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Animals , Mice , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Neovascularization, Physiologic/genetics , Cell Differentiation/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Neurogenesis/genetics , Glycolysis , Angiogenesis
3.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-37546781

ABSTRACT

Dorsal interneurons (dIs) in the spinal cord encode the perception of touch, pain, heat, itch, and proprioception. While previous studies using genetic strategies in animal models have revealed important insights into dI development, the molecular details by which dIs arise as distinct populations of neurons remain incomplete. We have developed a resource to investigate dI fate specification by combining a single-cell RNA-Seq atlas of mouse ESC-derived dIs with pseudotime analyses. To validate this in silico resource as a useful tool, we used it to first identify novel genes that are candidates for directing the transition states that lead to distinct dI lineage trajectories, and then validated them using in situ hybridization analyses in the developing mouse spinal cord in vivo . We have also identified a novel endpoint of the dI5 lineage trajectory and found that dIs become more transcriptionally homogenous during terminal differentiation. Together, this study introduces a valuable tool for further discovery about the timing of gene expression during dI differentiation and demonstrates its utility clarifying dI lineage relationships. Summary statement: Pseudotime analyses of embryonic stem cell-derived dorsal spinal interneurons reveals both novel regulators and lineage relationships between different interneuron populations.

4.
Article in English | MEDLINE | ID: mdl-38102513

ABSTRACT

OBJECTIVE: Understanding diets of population subgroups is essential for monitoring health of diversifying populations, but currently, meal patterns of many population subgroups are not widely known. This paper aimed to identify meal patterns of racial groups in the UK and USA, considering if racial groups exhibit similar patterns of intake irrespective of location and relationships between meal patterns and health parameters. DESIGN: Data were extracted from the UK (National Diet and Nutrition Survey) and the USA (National Health and Nutrition Examination Survey) national dietary surveys. Temporal and content meal patterns among racial groups in the UK and USA (White, Black, Asian and Other, n = 1780 and n = 4339, respectively) were examined. Kruskal-Wallis tests were applied to understand differences across groups. Logistic regression models identified associations between meal patterns and body mass index and diet quality. RESULTS: Black groups consumed fewer eating occasions than White and Other groups in both countries, while UK racial groups consumed significantly more snacks than USA groups. Food group contribution to eating occasion consumption was similar across countries where Asian groups in the USA and UK had the lowest meat intake at lunch and dinner. Meal frequency was positively associated with diet quality. CONCLUSIONS: Overall, meal patterns differ across racial groups within a single country, and some differences were observed within groups of the same race across countries. Learnings from this research highlight the differences in consumption patterns across racial groups and the importance of considering a meal-based approach to dietary guidelines by racial group.

5.
Nat Cell Biol ; 25(6): 800-801, 2023 06.
Article in English | MEDLINE | ID: mdl-37225966
6.
NPJ Regen Med ; 8(1): 16, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922514

ABSTRACT

We developed an on-slide decellularization approach to generate acellular extracellular matrix (ECM) myoscaffolds that can be repopulated with various cell types to interrogate cell-ECM interactions. Using this platform, we investigated whether fibrotic ECM scarring affected human skeletal muscle progenitor cell (SMPC) functions that are essential for myoregeneration. SMPCs exhibited robust adhesion, motility, and differentiation on healthy muscle-derived myoscaffolds. All SPMC interactions with fibrotic myoscaffolds from dystrophic muscle were severely blunted including reduced motility rate and migration. Furthermore, SMPCs were unable to remodel laminin dense fibrotic scars within diseased myoscaffolds. Proteomics and structural analysis revealed that excessive collagen deposition alone is not pathological, and can be compensatory, as revealed by overexpression of sarcospan and its associated ECM receptors in dystrophic muscle. Our in vivo data also supported that ECM remodeling is important for SMPC engraftment and that fibrotic scars may represent one barrier to efficient cell therapy.

7.
bioRxiv ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36824905

ABSTRACT

Embryonic neural stem cells (NSCs, i.e., radial glia) in the ventricular-subventricular zone (V-SVZ) generate the majority of neurons and glia in the forebrain. Postnatally, embryonic radial glia disappear and a subpopulation of radial glia transition into adult NSCs. As this transition occurs, widespread neurogenesis in brain regions such as the cerebral cortex ends. The mechanisms that regulate the postnatal disappearance of radial glia and the ending of embryonic neurogenesis remain poorly understood. Here, we show that PR domain-containing 16 (Prdm16) promotes the disappearance of radial glia and the ending of neurogenesis in the cerebral cortex. Genetic deletion of Prdm16 from NSCs leads to the persistence of radial glia in the adult V-SVZ and prolonged postnatal cortical neurogenesis. Mechanistically, Prdm16 induces the postnatal reduction in Vascular Cell Adhesion Molecule 1 (Vcam1). The postnatal disappearance of radial glia and the ending of cortical neurogenesis occur normally in Prdm16-Vcam1 double conditional knockout mice. These observations reveal novel molecular regulators of the postnatal disappearance of radial glia and the ending of embryonic neurogenesis, filling a key knowledge gap in NSC biology.

8.
J Matern Fetal Neonatal Med ; 36(1): 2155043, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36514828

ABSTRACT

BACKGROUND: Gestational diabetes mellitus (GDM) characterized by dysfunction in maintaining glucose homeostasis is recognized as the most common metabolic complication associated with pregnancy leading to adverse clinical outcomes for maternal and fetal health. Although previous analysis of the findings from randomized controlled trials (RCTs) support that regular physical activity reduces the incidence of GDM during pregnancy, less is known about the optimal timing of intervention with respect to trimester stage. OBJECTIVES: To examine the interaction between both the timing and volume of supervised physical activity interventions on reducing the incidence of GDM during pregnancy. STUDY DESIGN: Electronic databases including CINAHL, Embase, Medline and the Cochrane library were searched for records up to 29 September 2022. Eligibility criteria were RCTs including standard antenatal care + supervised physical activity intervention without dietary modification vs. those receiving standard antenatal care alone in women with no previous diagnosis of GDM, type 1 or type 2 diabetes mellitus. RESULTS: Of the 3411 records identified, 20 RCTs comprising 6732 participants were included. It was found that supervised physical activity interventions decreased GDM risk when started within the first trimester (RR: 0.57, 95% CI: 0.41-0.79; p = .001) and by accumulating >600 MET·min·wk-1 of exercise (RR: 0.77, 95% CI: 0.60-0.98; p = .03) compared with standard antenatal care alone. Women with a BMI ≤25 kg/m2 experienced the greatest risk reduction in GDM following supervised exercise training (RR: 0.51, 95% CI: 0.34-0.75; p = .001). CONCLUSION: Supervised physical activity reduces the incidence of GDM during pregnancy. It is recommended that pregnant individuals achieve a minimum of 600 MET·min·wk-1 of physical activity during the first trimester in order to reduce their odds of developing GDM. Attaining a healthy pre-pregnancy BMI is also an important determinant for the prevention of GDM with exercise.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Pregnancy , Female , Humans , Diabetes, Gestational/epidemiology , Diabetes, Gestational/prevention & control , Incidence , Prenatal Care , Exercise
9.
J Neurosci ; 42(45): 8542-8555, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36198499

ABSTRACT

The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.


Subject(s)
Demyelinating Diseases , Remyelination , Animals , Female , Male , Mice , Cell Differentiation , Demyelinating Diseases/metabolism , Myelin Sheath/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/metabolism , Mice, Knockout
10.
Stem Cell Reports ; 17(10): 2220-2238, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36179695

ABSTRACT

Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are a promising system for studying the distinct features of the developing human brain and the underlying causes of many neurological disorders. While organoid technology is steadily advancing, many challenges remain, including potential batch-to-batch and cell-line-to-cell-line variability, and structural inconsistency. Here, we demonstrate that a major contributor to cortical organoid quality is the way hPSCs are maintained prior to differentiation. Optimal results were achieved using particular fibroblast-feeder-supported hPSCs rather than feeder-independent cells, differences that were reflected in their transcriptomic states at the outset. Feeder-supported hPSCs displayed activation of diverse transforming growth factor ß (TGFß) superfamily signaling pathways and increased expression of genes connected to naive pluripotency. We further identified combinations of TGFß-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enhance the formation of well-structured brain tissues suitable for disease modeling.


Subject(s)
Organoids , Pluripotent Stem Cells , Cell Differentiation/physiology , Humans , Organoids/metabolism , Pluripotent Stem Cells/metabolism , Telencephalon/metabolism , Transforming Growth Factor beta/metabolism
11.
Cell Rep ; 40(3): 111119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858555

ABSTRACT

Restoring sensation after injury or disease requires a reproducible method for generating large quantities of bona fide somatosensory interneurons. Toward this goal, we assess the mechanisms by which dorsal spinal interneurons (dIs; dI1-dI6) can be derived from mouse embryonic stem cells (mESCs). Using two developmentally relevant growth factors, retinoic acid (RA) and bone morphogenetic protein (BMP) 4, we recapitulate the complete in vivo program of dI differentiation through a neuromesodermal intermediate. Transcriptional profiling reveals that mESC-derived dIs strikingly resemble endogenous dIs, with the correct molecular and functional signatures. We further demonstrate that RA specifies dI4-dI6 fates through a default multipotential state, while the addition of BMP4 induces dI1-dI3 fates and activates Wnt signaling to enhance progenitor proliferation. Constitutively activating Wnt signaling permits the dramatic expansion of neural progenitor cultures. These cultures retain the capacity to differentiate into diverse populations of dIs, thereby providing a method of increasing neuronal yield.


Subject(s)
Gene Expression Regulation, Developmental , Wnt Signaling Pathway , Animals , Cell Differentiation/physiology , Interneurons/metabolism , Mice , Spinal Cord/metabolism , Tretinoin/metabolism , Tretinoin/pharmacology
12.
Nat Aging ; 1(8): 698-714, 2021 08.
Article in English | MEDLINE | ID: mdl-34746803

ABSTRACT

Senescent cells (SNCs) degenerate the fibrous cap that normally prevents atherogenic plaque rupture, a leading cause of myocardial infarction and stroke. Here we explored the underlying mechanism using pharmacological or transgenic approaches to clear SNCs in the Ldlr -/- mouse model of atherosclerosis. SNC clearance reinforced fully deteriorated fibrous caps in highly advanced lesions, as evidenced by restored vascular smooth muscle cell (VSMC) numbers, elastin content, and overall cap thickness. We found that SNCs inhibit VSMC promigratory phenotype switching in the first interfiber space of the arterial wall directly beneath atherosclerotic plaque, thereby limiting lesion entry of medial VSMCs for fibrous cap assembly or reinforcement. SNCs do so by antagonizing IGF-1 through the secretion of insulin-like growth factor-binding protein 3 (Igfbp3). These data indicate that the intermittent use of senolytic agents or IGFBP-3 inhibition in combination with lipid lowering drugs may provide therapeutic benefit in atherosclerosis.


Subject(s)
Atherosclerosis , Myocardial Infarction , Plaque, Atherosclerotic , Mice , Animals , Atherosclerosis/drug therapy , Plaque, Atherosclerotic/genetics , Myocardial Infarction/metabolism , Cellular Senescence , Myocytes, Smooth Muscle/metabolism
13.
EMBO Mol Med ; 13(11): e14146, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34725920

ABSTRACT

The mechanisms underlying the development of glomerular lesions during aging are largely unknown. It has been suggested that senescence might play a role, but the pathophysiological link between senescence and lesion development remains unexplained. Here, we uncovered an unexpected role for glomerular endothelial cells during aging. In fact, we discovered a detrimental cross-talk between senescent endothelial cells and podocytes, through PAI-1. In vivo, selective inactivation of PAI-1 in endothelial cells protected glomeruli from lesion development and podocyte loss in aged mice. In vitro, blocking PAI-1 in supernatants from senescent endothelial cells prevented podocyte apoptosis. Consistently, depletion of senescent cells prevented podocyte loss in old p16 INK-ATTAC transgenic mice. Importantly, these experimental findings are relevant to humans. We showed that glomerular PAI-1 expression was predictive of poor outcomes in transplanted kidneys from elderly donors. In addition, we observed that in elderly patients, urinary PAI-1 was associated with age-related chronic kidney disease. Altogether, these results uncover a novel mechanism of kidney disease and identify PAI-1 as a promising biomarker of kidney dysfunction in allografts from elderly donors.


Subject(s)
Kidney Diseases , Podocytes , Aged , Animals , Cellular Senescence , Endothelial Cells , Humans , Kidney Glomerulus , Mice , Plasminogen Activator Inhibitor 1
14.
iScience ; 24(10): 103140, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34632335

ABSTRACT

Fukuyama congenital muscular dystrophy (FCMD) is a severe, intractable genetic disease that affects the skeletal muscle, eyes, and brain and is attributed to a defect in alpha dystroglycan (αDG) O-mannosyl glycosylation. We previously established disease models of FCMD; however, they did not fully recapitulate the phenotypes observed in human patients. In this study, we generated induced pluripotent stem cells (iPSCs) from a human FCMD patient and differentiated these cells into three-dimensional brain organoids and skeletal muscle. The brain organoids successfully mimicked patient phenotypes not reliably reproduced by existing models, including decreased αDG glycosylation and abnormal radial glial (RG) fiber migration. The basic polycyclic compound Mannan-007 (Mn007) restored αDG glycosylation in the brain and muscle models tested and partially rescued the abnormal RG fiber migration observed in cortical organoids. Therefore, our study underscores the importance of αDG O-mannosyl glycans for normal RG fiber architecture and proper neuronal migration in corticogenesis.

15.
Stem Cell Reports ; 16(10): 2548-2564, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34506726

ABSTRACT

The specification of inhibitory neurons has been described for the mouse and human brain, and many studies have shown that pluripotent stem cells (PSCs) can be used to create interneurons in vitro. It is unclear whether in vitro methods to produce human interneurons generate all the subtypes found in brain, and how similar in vitro and in vivo interneurons are. We applied single-nuclei and single-cell transcriptomics to model interneuron development from human cortex and interneurons derived from PSCs. We provide a direct comparison of various in vitro interneuron derivation methods to determine the homogeneity achieved. We find that PSC-derived interneurons capture stages of development prior to mid-gestation, and represent a minority of potential subtypes found in brain. Comparison with those found in fetal or adult brain highlighted decreased expression of synapse-related genes. These analyses highlight the potential to tailor the method of generation to drive formation of particular subtypes.


Subject(s)
Interneurons/metabolism , Neural Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Transcriptome , Cell Differentiation , Cellular Reprogramming Techniques/methods , Humans , Single-Cell Analysis , Transcription Factors/metabolism
16.
Nat Neurosci ; 24(10): 1488-1500, 2021 10.
Article in English | MEDLINE | ID: mdl-34426698

ABSTRACT

Brain organoids represent a powerful tool for studying human neurological diseases, particularly those that affect brain growth and structure. However, many diseases manifest with clear evidence of physiological and network abnormality in the absence of anatomical changes, raising the question of whether organoids possess sufficient neural network complexity to model these conditions. Here, we explore the network-level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex network dynamics reminiscent of intact brain preparations. We demonstrate highly abnormal and epileptiform-like activity in organoids derived from induced pluripotent stem cells from individuals with Rett syndrome, accompanied by transcriptomic differences revealed by single-cell analyses. We also rescue key physiological activities with an unconventional neuroregulatory drug, pifithrin-α. Together, these findings provide an essential foundation for the utilization of brain organoids to study intact and disordered human brain network formation and illustrate their utility in therapeutic discovery.


Subject(s)
Brain/physiopathology , Epilepsy/physiopathology , Neurons , Adult , Benzothiazoles/pharmacology , Brain/growth & development , Calcium Signaling , Child, Preschool , Epilepsy/diagnostic imaging , Female , Humans , Induced Pluripotent Stem Cells , Methyl-CpG-Binding Protein 2/genetics , Nerve Net/physiopathology , Neurogenesis/genetics , Neuroimaging , Rett Syndrome/diagnostic imaging , Rett Syndrome/physiopathology , Single-Cell Analysis , Synapses , Toluene/analogs & derivatives , Toluene/pharmacology , Transcriptome
17.
J Am Soc Nephrol ; 32(8): 1987-2004, 2021 08.
Article in English | MEDLINE | ID: mdl-34135081

ABSTRACT

BACKGROUND: Peripheral vascular diseases may induce chronic ischemia and cellular injury distal to the arterial obstruction. Cellular senescence involves proliferation arrest in response to stress, which can damage neighboring cells. Renal artery stenosis (RAS) induces stenotic-kidney dysfunction and injury, but whether these arise from cellular senescenceand their temporal pattern remain unknown. METHODS: Chronic renal ischemia was induced in transgenic INK-ATTAC and wild type C57BL/6 mice by unilateral RAS, and kidney function (in vivo micro-MRI) and tissue damage were assessed. Mouse healthy and stenotic kidneys were analyzed using unbiased single-cell RNA-sequencing. To demonstrate translational relevance, cellular senescence was studied in human stenotic kidneys. RESULTS: Using intraperitoneal AP20187 injections starting 1, 2, or 4 weeks after RAS, selective clearance of cells highly expressing p16Ink4a attenuated cellular senescence and improved stenotic-kidney function; however, starting treatment immediately after RAS induction was unsuccessful. Broader clearance of senescent cells, using the oral senolytic combination dasatinib and quercetin, in C57BL/6 RAS mice was more effective in clearing cells positive for p21 (Cdkn1a) and alleviating renal dysfunction and damage. Unbiased, single-cell RNA sequencing in freshly dissociated cells from healthy and stenotic mouse kidneys identified stenotic-kidney epithelial cells undergoing both mesenchymal transition and senescence. As in mice, injured human stenotic kidneys exhibited cellular senescence, suggesting this process is conserved. CONCLUSIONS: Maladaptive tubular cell senescence, involving upregulated p16 (Cdkn2a), p19 (Cdkn2d), and p21 (Cdkn1a) expression, is associated with renal dysfunction and injury in chronic ischemia. These findings support development of senolytic strategies to delay chronic ischemic renal injury.


Subject(s)
Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Ischemia/physiopathology , Kidney/physiopathology , Renal Insufficiency, Chronic/physiopathology , p21-Activated Kinases/metabolism , Animals , Apoptosis/drug effects , Caspase 8/metabolism , Cellular Senescence/drug effects , Cellular Senescence/genetics , Chronic Disease , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p19/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Dasatinib/pharmacology , Disease Models, Animal , Enzyme Activation/drug effects , Epithelial Cells/physiology , Epithelial-Mesenchymal Transition , Gene Expression , Heparin-binding EGF-like Growth Factor/genetics , Humans , Ischemia/etiology , Kidney/blood supply , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteopontin/genetics , Protein Kinase Inhibitors/pharmacology , Renal Artery Obstruction/complications , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Sequence Analysis, RNA , Single-Cell Analysis , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology , Up-Regulation , p21-Activated Kinases/genetics
18.
STAR Protoc ; 2(1): 100319, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33659900

ABSTRACT

We describe two differentiation protocols to derive sensory spinal interneurons (INs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). In protocol 1, we use retinoic acid (RA) to induce pain, itch, and heat mediating dI4/dI6 interneurons, and in protocol 2, RA with bone morphogenetic protein 4 (RA+BMP4) is used to induce proprioceptive dI1s and mechanosensory dI3s in hPSC cultures. These protocols provide an important step toward developing therapies for regaining sensation in spinal cord injury patients. For complete details on the use and execution of this protocol, please refer to Gupta et al. (2018).


Subject(s)
Flow Cytometry/methods , High-Throughput Nucleotide Sequencing/methods , Interneurons/cytology , Bone Morphogenetic Protein 4/pharmacology , Cell Differentiation/drug effects , Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Pluripotent Stem Cells/drug effects , Spine/cytology , Tretinoin/pharmacology
19.
Nat Metab ; 2(11): 1284-1304, 2020 11.
Article in English | MEDLINE | ID: mdl-33199925

ABSTRACT

Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Aging/metabolism , Membrane Glycoproteins/metabolism , NAD/biosynthesis , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Aging/immunology , Animals , Bone Marrow Transplantation , Cellular Senescence , HEK293 Cells , Humans , Inflammation/immunology , Liver/growth & development , Liver/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nicotinamide Mononucleotide/metabolism , Phenotype
20.
Cell Rep ; 30(6): 1964-1981.e3, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049024

ABSTRACT

The laminar architecture of the mammalian neocortex depends on the orderly generation of distinct neuronal subtypes by apical radial glia (aRG) during embryogenesis. Here, we identify critical roles for the autism risk gene Foxp1 in maintaining aRG identity and gating the temporal competency for deep-layer neurogenesis. Early in development, aRG express high levels of Foxp1 mRNA and protein, which promote self-renewing cell divisions and deep-layer neuron production. Foxp1 levels subsequently decline during the transition to superficial-layer neurogenesis. Sustained Foxp1 expression impedes this transition, preserving a population of cells with aRG identity throughout development and extending the early neurogenic period into postnatal life. FOXP1 expression is further associated with the initial formation and expansion of basal RG (bRG) during human corticogenesis and can promote the formation of cells exhibiting characteristics of bRG when misexpressed in the mouse cortex. Together, these findings reveal broad functions for Foxp1 in cortical neurogenesis.


Subject(s)
Forkhead Transcription Factors/metabolism , Neural Stem Cells/metabolism , Repressor Proteins/metabolism , Animals , Cell Differentiation/physiology , Cell Self Renewal/physiology , Humans , Mice , Neural Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...