Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 487(1-2): 72-80, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-25839417

ABSTRACT

Interest in granulation processes using twin screw extrusion machines is rapidly growing. The primary objectives of this study were to develop a continuous granulation process for direct production of granules using this technique with glyceryl behenate as a binder, evaluate the properties of the resulting granules and develop controlled release tablets containing tramadol HCl. In addition, the granulation mechanism was probed and the polymorphic form of the lipid and drug release rate were evaluated on stability. Granules were prepared using a Leistritz NANO16 twin screw extruder operated without a constricting die. The solid state of the granules were characterized by differential scanning calorimetry and X-ray diffraction. Formulated tablets were studied in 0.1N HCl containing 0-40% ethanol to investigate propensity for alcohol induced dose dumping. The extrusion barrel temperature profile and feed rate were determined to be the primary factors influencing the particle size distribution. Granules were formed by a combination immersion/distribution mechanism, did not require subsequent milling, and were observed to contain desirable polymorphic forms of glyceryl behenate. Drug release from tablets was complete and controlled over 16 h and the tablets were determined to be resistant to alcohol induced dose dumping. The drug release rate from the tablets was found to be stable at 40°C and 75% relative humidity for the duration of a 3 month study.


Subject(s)
Analgesics, Opioid/administration & dosage , Fatty Acids/chemistry , Tramadol/administration & dosage , Analgesics, Opioid/adverse effects , Analgesics, Opioid/pharmacokinetics , Delayed-Action Preparations , Drug Compounding , Drug Stability , Excipients , Fatty Acids/administration & dosage , Particle Size , Powders , Solubility , Tablets , Tramadol/adverse effects , Tramadol/pharmacokinetics
2.
J Pharm Pharmacol ; 67(7): 918-38, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25645386

ABSTRACT

OBJECTIVES: This study focuses on the application of hot melt extrusion (HME) to produce solid dispersions containing griseofulvin (GF) and investigates the in-vitro dissolution performance of HME powders and resulting tablet compositions containing HME-processed dispersions. METHODS: Binary, ternary and quaternary dispersions containing GF, enteric polymer (Eudragit L100-55 or AQOAT-LF) and/or vinyl pyrrolidone-based polymer (Plasdone K-12 povidone or S-630 copovidone) were processed by HME. Two plasticizers, triethyl citrate (TEC) and acetyl tributyl citrate (ATBC), were incorporated to aid in melt processing and to modify release of GF in neutral media following a pH-change in dissolution. Products were characterized for GF recovery, degrees of compositional amorphous character, intermolecular interactions and non-sink dissolution performance. KEY FINDINGS: Binary dispersions exhibited lower maximum observed concentration values and magnitudes of supersaturated GF in neutral media dissolution in comparison with the ternary dispersions. The quaternary HME products, 1 : 2 : 1 : 0.6 GF : L100-55 : S-630 : ATBC and GF : AQOAT-LF : K-12 : ATBC, were determined as the most optimal concentration-enhancing compositions due to increased hydrogen bonding of enteric functional groups with carbonyl/acetate groups of vinyl pyrrolidone-based polymers, reduced compositional crystallinity and presence of incorporated hydrophobic plasticizer. CONCLUSIONS: HME products containing combinations of concentration-enhancing polymers can supersaturate and sustain GF dissolution to greater magnitudes in neutral media following the pH-transition and be compressed into immediate-release tablets exhibiting similar dissolution profiles.


Subject(s)
Griseofulvin/chemistry , Polymers/chemistry , Acrylic Resins/chemistry , Citrates/chemistry , Drug Carriers/chemistry , Drug Compounding/methods , Hot Temperature , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Plasticizers/chemistry , Povidone/chemistry , Powders/chemistry , Solubility , Tablets/chemistry
3.
Drug Dev Ind Pharm ; 41(8): 1294-301, 2015.
Article in English | MEDLINE | ID: mdl-25133663

ABSTRACT

While the use of amorphous solid dispersions to improve aqueous solubility is well documented, little consideration has traditionally been given to the finished dosage form. The objective of this study was to evaluate the dissolution performance of amorphous solid dispersions containing a dispersed superdisintegrant with binding properties. KinetiSol® dispersing was used to thermally process hypromellose acetate succinate-based compositions containing the drug substance nifedipine (NIF) and a highly compressible grade of low-substituted hydroxypropyl cellulose (New Binder Disintegrants; NBD-grade). Solid-state analysis demonstrated that compositions were rendered amorphous during processing. Tablets containing intra-dispersion NBD were found to exhibit non-sink dissolution performance similar to milled intermediate, demonstrating excellent disintegration characteristics. Conversely, tablets without intra-dispersion NBD were found to release significantly less NIF during dissolution analysis due to particle agglomeration. It was determined that compressibility and particle wetting increased as the level of intra-dispersion NBD increased.


Subject(s)
Cellulose/analogs & derivatives , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Cellulose/chemistry , Cellulose/pharmacokinetics , Drug Carriers/pharmacokinetics , Tablets
4.
Mol Pharm ; 12(1): 120-6, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25347621

ABSTRACT

The objective of this study was to evaluate the use of glyceryl behenate as a plasticizer and release modifier in solid dispersion systems containing itraconazole and carbamazepine. Amorphous solid dispersions of high molecular weight polyvinylpyrrolidone were prepared by hot-melt extrusion, the processing of which was improved by the inclusion of glyceryl behenate. Dispersions were milled and subsequently compressed into tablets. Solid dispersions were also prepared by KinetiSol Dispersing, which allowed for the manufacture of monolithic tablets of the same composition and shape as compressed tablets. Tablets without glyceryl behenate and all compressed tablets were observed to have an incomplete release profile likely due to drug crystallization within the tablet as this occurred at conditions in which dissolution concentrations were below saturation. Monolithic tablets formulated to be more hydrophobic, by including glyceryl behenate, allowed for sustained release below and above saturation conditions.


Subject(s)
Carbamazepine/chemistry , Fatty Acids/chemistry , Tablets/chemistry , Chromatography, High Pressure Liquid , Delayed-Action Preparations , Drug Delivery Systems , Hot Temperature , Itraconazole/chemistry , Kinetics , Lipids/chemistry , Molecular Weight , Plasticizers , Povidone/chemistry , Powders , X-Ray Diffraction
5.
Drug Dev Ind Pharm ; 41(3): 382-97, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24329130

ABSTRACT

Acetyl-11-keto-ß-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.


Subject(s)
Chemistry, Pharmaceutical/methods , Frankincense/chemical synthesis , Plant Gums/chemical synthesis , Triterpenes/chemical synthesis , Water/chemistry , Animals , Frankincense/metabolism , Male , Plant Gums/metabolism , Rats , Rats, Sprague-Dawley , Solubility , Triterpenes/metabolism , Water/metabolism , X-Ray Diffraction
6.
AAPS PharmSciTech ; 11(2): 760-74, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20443089

ABSTRACT

In this study, hot melt extrusion (HME) and KinetiSol Dispersing (KSD) were utilized to prepare dissolution-enhanced solid dispersions of Roche Research Compound A (ROA), a BCS class II drug. Preformulation characterization studies showed that ROA was chemically unstable at elevated temperatures and acidic pH values. Eudragit L100-55 and AQOAT LF (HPMCAS) were evaluated as carrier polymers. Dispersions were characterized for ROA recovery, crystallinity, homogeneity, and non-sink dissolution. Eudragit L100-55 dispersions prepared by HME required the use of micronized ROA and reduced residence times in order to become substantially amorphous. Compositions containing HPMCAS were also prepared by HME, but an amorphous dispersion could not be obtained. All HME compositions contained ROA-related impurities. KSD was investigated as a method to reduce the decomposition of ROA while rendering compositions amorphous. Substantially amorphous, plasticizer free compositions were processed successfully by KSD with significantly higher ROA recovery values and amorphous character than those achieved by HME. A near-infrared chemical imaging analysis was conducted on the solid dispersions as a measure of homogeneity. A statistical analysis showed similar levels of homogeneity in compositions containing Eudragit L100-55, while differences were observed in those containing HMPCAS. Non-sink dissolution analysis of all compositions showed rapid supersaturation after pH adjustment to approximately two to three times the equilibrium solubility of ROA, which was maintained for at least 24 h. The results of the study demonstrated that KSD is an effective method of forming dissolution-enhanced amorphous solid solutions in cases where HME is not a feasible technique.


Subject(s)
Drug Compounding/methods , Pharmaceutical Preparations/chemistry , Water/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...