Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 105, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38204134

ABSTRACT

This review presents an analysis of formamide, focussing on its occurrence in nature, its functional roles, and its promising applications in the context of the bioeconomy. We discuss the utilization of formamide as an innovative nitrogen source achieved through metabolic engineering. These approaches underscore formamide's potential in supporting growth and production in biotechnological processes. Furthermore, our review illuminates formamide's role as a nitrogen source capable of safeguarding cultivation systems against contamination in non-sterile conditions. This attribute adds an extra layer of practicality to its application, rendering it an attractive candidate for sustainable and resilient industrial practices. Additionally, the article unveils the versatility of formamide as a potential carbon source that could be combined with formate or CO2 assimilation pathways. However, its attributes, i.e., enriched nitrogen content and comparatively limited energy content, led to conclude that formamide is more suitable as a co-substrate and that its use as a sole source of carbon for biomass and bio-production is limited. Through our exploration of formamide's properties and its applications, this review underscores the significance of formamide as valuable resource for a large spectrum of industrial applications. KEY POINTS: • Formidases enable access to formamide as source of nitrogen, carbon, and energy • The formamide/formamidase system supports non-sterile fermentation • The nitrogen source formamide supports production of nitrogenous compounds.


Subject(s)
Formamides , Nitrogen , Nitrogen Compounds , Carbon
2.
Microb Biotechnol ; 17(1): e14400, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206115

ABSTRACT

Microbial synthetic consortia are a promising alternative to classical monoculture for biotechnological applications and fermentative processes. Their versatile use offers advantages in the degradation of complex substrates, the allocation of the metabolic burden between individual partners, or the division of labour in energy utilisation, substrate supply or product formation. Here, stable synthetic consortia between the two industrially relevant production hosts, Pseudomonas putida KT2440 and Corynebacterium glutamicum ATCC13032, were established for the first time. By applying arginine auxotrophy/overproduction and/or formamidase-based utilisation of the rare nitrogen source formamide, different types of interaction were realised, such as commensal relationships (+/0 and 0/+) and mutualistic cross-feeding (+/+). These consortia did not only show stable growth but could also be used for fermentative production of the γ-glutamylated amines theanine and γ-glutamyl-isopropylamide (GIPA). The consortia produced up to 2.8 g L-1 of GIPA and up to 2.6 g L-1 of theanine, a taste-enhancing constituent of green tea leaves. Thus, the advantageous approach of using synthetic microbial consortia for fermentative production of value-added compounds was successfully demonstrated.


Subject(s)
Corynebacterium glutamicum , Glutamates , Pseudomonas putida , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Pseudomonas putida/genetics , Microbial Consortia , Metabolic Engineering
3.
Chembiochem ; 25(2): e202300608, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37987374

ABSTRACT

Glutamylation yields N-functionalized amino acids in several natural pathways. γ-Glutamylated amino acids may exhibit improved properties for their industrial application, e. g., as taste enhancers or in peptide drugs. γ-Glutamyl-isopropylamide (GIPA) can be synthesized from isopropylamine (IPA) and l-glutamate. In Pseudomonas sp. strain KIE171, GIPA is an intermediate in the biosynthesis of l-alaninol (2-amino-1-propanol), a precursor of the fluorochinolone antibiotic levofloxacin and of the chloroacetanilide herbicide metolachlor. In this study, fermentative production of GIPA with metabolically engineered Pseudomonas putida KT2440 using γ-glutamylmethylamide synthetase (GMAS) from Methylorubrum extorquens was established. Upon addition of IPA during growth with glycerol as carbon source in shake flasks, the recombinant strain produced up to 21.8 mM GIPA. In fed-batch bioreactor cultivations, GIPA accumulated to a titer of 11 g L-1 with a product yield of 0.11 g g-1 glycerol and a volumetric productivity of 0.24 g L-1 h-1 . To the best of our knowledge, this is the first fermentative production of GIPA.


Subject(s)
Glycerol , Metabolic Engineering , Propylamines , Fermentation , Glycerol/metabolism , Glutamic Acid/metabolism
4.
J Agric Food Chem ; 69(34): 9849-9858, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34465093

ABSTRACT

N-alkylated amino acids are intermediates of natural biological pathways and can be found incorporated in peptides or have physiological roles in their free form. The N-ethylated amino acid l-theanine shows taste-enhancing properties and health benefits. It naturally occurs in green tea as major free amino acid. Isolation of l-theanine from Camilla sinensis shows low efficiency, and chemical synthesis results in a racemic mixture. Therefore, biochemical approaches for the production of l-theanine gain increasing interest. Here, we describe metabolic engineering of Pseudomonas putida KT2440 for the fermentative production of l-theanine from monoethylamine and carbon sources glucose, glycerol, or xylose using heterologous enzymes from Methylorubrum extorquens for l-theanine production and heterologous enzymes from Caulobacter crescentus for growth with xylose. l-Theanine (15.4 mM) accumulated in shake flasks with minimal medium containing monoethylamine and glucose, 15.2 mM with glycerol and 7 mM with xylose. Fed-batch bioreactor cultures yielded l-theanine titers of 10 g L-1 with glucose plus xylose, 17.2 g L-1 with glycerol, 4 g L-1 with xylose, and 21 g L-1 with xylose plus glycerol, respectively. To the best of our knowledge, this is the first l-theanine process using P. putida and the first compatible with the use of various alternative carbon sources.


Subject(s)
Metabolic Engineering , Pseudomonas putida , Fermentation , Glutamates , Pseudomonas putida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...