Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem C Mater ; 12(17): 6310-6318, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38707254

ABSTRACT

Triplet-triplet-annihilation upconversion (TTA-UC) has attracted significant attention as an approach to harvest low energy solar photons that cannot be captured by conventional photovoltaic devices. However, device integration requires the design of solid-state TTA-UC materials that combine high upconversion efficiency with long term stability. Herein, we report an efficient solid-state TTA-UC system based on organic-inorganic hybrid polymers known as ureasils as hosts for the archetypal sensitiser/emitter pair of palladium(ii) octaethylporphyrin and diphenylanthracene. The role of the ureasil structure on the TTA-UC performance was probed by varying the branching and molecular weight of the organic precursor to tune the structural, mechanical, and thermal properties. Solid-state green-to-blue UC quantum yields of up to 1.86% were observed under ambient conditions. Notably, depending on the ureasil structure, UC emission could be retained for >70 days without any special treatment, including deoxygenation. Detailed analysis of the structure-function trends revealed that while a low glass transition temperature is required to promote TTA-UC molecular collisions, a higher inorganic content is the primary factor that determines the UC efficiency and stability, due to the inherent oxygen barrier provided by the silica nanodomains.

2.
Macromolecules ; 54(12): 5287-5303, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34176961

ABSTRACT

Triplet-triplet annihilation upconversion (TTA-UC) is a process by which a lower energy photon can be upconverted to a higher energy state. The incorporation of TTA-UC materials into solid-state hosts has enabled advances in solar energy and many other applications. The choice of host system is, however, far from trivial and often calls for a careful compromise between characteristics such as high molecular mobility, low oxygen diffusion, and high material stability, factors that often contradict one another. Here, we evaluate these challenges in the context of the state-of-the-art of primarily polymer hosts and the advantages they hold in terms of material selection and tunability of their diffusion or mechanical or thermal properties. We encourage more collaborative research between polymer scientists and photophysicists in order to further optimize the current systems and outline our thoughts for the future direction of the field.

3.
Angew Chem Int Ed Engl ; 59(38): 16755-16763, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32542926

ABSTRACT

Many interesting target guest molecules have low symmetry, yet most methods for synthesising hosts result in highly symmetrical capsules. Methods of generating lower symmetry pores are thus required to maximise the binding affinity in host-guest complexes. Herein, we use mixtures of tetraaldehyde building blocks with cyclohexanediamine to access low-symmetry imine cages. Whether a low-energy cage is isolated can be correctly predicted from the thermodynamic preference observed in computational models. The stability of the observed structures depends on the geometrical match of the aldehyde building blocks. One bent aldehyde stands out as unable to assemble into high-symmetry cages-and the same aldehyde generates low-symmetry socially self-sorted cages when combined with a linear aldehyde. We exploit this finding to synthesise a family of low-symmetry cages containing heteroatoms, illustrating that pores of varying geometries and surface chemistries may be reliably accessed through computational prediction and self-sorting.

4.
Chemistry ; 26(17): 3718-3722, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32011048

ABSTRACT

Molecular dumbbells with organic cage capping units were synthesised via a multi-component imine condensation between a tri-topic amine and di- and tetra-topic aldehydes. This is an example of self-sorting, which can be rationalised by computational modelling.

6.
Nanoscale ; 10(47): 22381-22388, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30474677

ABSTRACT

A completely unsymmetrical porous organic cage was synthesised from a C2v symmetrical building block that was identified by a computational screen. The cage was formed through a 12-fold imine condensation of a tritopic C2v symmetric trialdehyde with a ditopic C2 symmetric diamine in a [4 + 6] reaction. The cage was rigid and microporous, as predicted by the simulations, with an apparent Brunauer-Emmett-Teller surface area of 578 m2 g-1. The reduced symmetry of the tritopic building block relative to its topicity meant there were 36 possible structural isomers of the cage. Experimental characterisation suggests a single isomer with 12 unique imine environments, but techniques such as NMR could not conclusively identify the isomer. Computational structural and electronic analysis of the possible isomers was used to identify the most likely candidates, and hence to construct a 3-dimensional model of the amorphous solid. The rational design of unsymmetrical cages using building blocks with reduced symmetry offers new possibilities in controlling the degree of crystallinity, porosity, and solubility, of self-assembled materials.

7.
Chem Sci ; 8(4): 2640-2651, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28553499

ABSTRACT

Porous liquids are a new class of material that could have applications in areas such as gas separation and homogeneous catalysis. Here we use a combination of measurement techniques, molecular simulations, and control experiments to advance the quantitative understanding of these liquids. In particular, we show that the cage cavities remain unoccupied in the absence of a suitable guest, and that the liquids can adsorb large quantities of gas, with gas occupancy in the cages as high as 72% and 74% for Xe and SF6, respectively. Gases can be reversibly loaded and released by using non-chemical triggers such as sonication, suggesting potential for gas separation schemes. Diffusion NMR experiments show that gases are in dynamic equilibrium between a bound and unbound state in the cage cavities, in agreement with recent simulations for related porous liquids. Comparison with gas adsorption in porous organic cage solids suggests that porous liquids have similar gas binding affinities, and that the physical properties of the cage molecule are translated into the liquid state. By contrast, some physical properties are different: for example, solid homochiral porous cages show enantioselectivity for chiral aromatic alcohols, whereas the equivalent homochiral porous liquids do not. This can be attributed to a loss of supramolecular organisation in the isotropic porous liquid.

SELECTION OF CITATIONS
SEARCH DETAIL
...