Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Reprod Sci ; 31(2): 309-319, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37524971

ABSTRACT

In the last four decades, advances in assisted reproductive technology (ART) have offered hope to individuals with fertility problems to conceive. However, a closer examination of the clinical outcomes of ART shows a stark contrast in Asian women compared to Caucasians, with majority of studies reporting lower reproductive success among Asian women. We performed a systematic review to elucidate the genes associated with ART clinical outcomes, with a focus on Asian ethnicities. We completed a database search to identify all studies associated with reproductive outcomes in women of different ethnic backgrounds. Following PRISMA, 128 studies were analyzed. Pathway analysis of gene sets was done using Cytoscapev3.4.0. We observed that age at menarche (AAM) was correlated with the timing of the first pregnancy, with Hawaiians having the lowest age (22.2 years) and Japanese the highest age (25.0 years). LIN28 mutations were associated with AAM and prevalent in both Chinese and American populations. FMR1 was most associated with ovarian reserve. Network analysis highlighted a close association between FMR1, FSHR, ESR1, BMP15, and INHA, through biological functions affecting menstrual cycle and hypothalamic-pituitary axis and therefore ovarian follicle development. Leveraging these findings, we propose the development of a personalized, ethnic-specific biomarker panel which would enhance patient stratification to address every woman's unique reproductive potential.


Subject(s)
Native Hawaiian or Other Pacific Islander , Reproduction , Reproductive Health , Pregnancy , Humans , Female , United States , Young Adult , Adult , Reproduction/genetics , Menstrual Cycle , Asian , Reproductive Techniques, Assisted , Fragile X Mental Retardation Protein/genetics
2.
Environ Int ; 180: 108220, 2023 10.
Article in English | MEDLINE | ID: mdl-37741006

ABSTRACT

Microplastics are created for commercial use, are shed from textiles, or result from the breakdown of larger plastic items. Recent reports have shown that microplastics accumulate in human tissues and may have adverse health consequences. Currently, there are no standardized environmental monitoring systems to track microplastic accumulation within human tissues. Using Raman spectroscopy, we investigated the temporal exposures to plastic pollution in Hawai'i and noted a significant increase in the accumulation of microplastics in discarded placentas over the past 15 years, with changes in the size and chemical composition of the polymers. These findings provide a rare insight into the vulnerability and sensitivity of Pacific Island residents to plastic pollution and illustrate how discarded human tissues can be used as an innovative environmental plastic pollution monitoring system.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Pregnancy , Female , Plastics/chemistry , Hawaii , Environmental Monitoring , Environmental Pollution , Water Pollutants, Chemical/analysis
3.
medRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37693517

ABSTRACT

Epigenome-wide DNA methylation analysis (EWAS) is an important approach to identify biomarkers for early disease detection and prognosis prediction, yet its results could be confounded by other factors such as cell-type heterogeneity and patient characteristics. In this study, we address the importance of confounding adjustment by examining DNA methylation patterns in cord blood exposed to severe preeclampsia (PE), a prevalent and potentially fatal pregnancy complication. Without such adjustment, a misleading global hypomethylation pattern is obtained. However, after adjusting cell type proportions and patient clinical characteristics, most of the so-called significant CpG methylation changes associated with severe PE disappear. Rather, the major effect of PE on cord blood is through the proportion changes in different cell types. These results are validated using a previously published cord blood DNA methylation dataset, where global hypomethylation pattern was also wrongfully obtained without confounding adjustment. Additionally, several cell types significantly change as gestation progress (eg. granulocyte, nRBC, CD4T, and B cells), further confirming the importance of cell type adjustment in EWAS study of cord blood tissues. Our study urges the community to perform confounding adjustments in EWAS studies, based on cell type heterogeneity and other patient characteristics.

4.
Aging (Albany NY) ; 15(2): 353-370, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575046

ABSTRACT

Variations in telomere length (TL) have been associated with aging, stress, and many diseases. Placenta TL is an essential molecular component influencing the outcome of birth. Previous investigations into the relationship between placenta TL and preeclampsia (PE) have produced conflicting findings. We conducted a retrospective case-control analysis in this study to address the disparity. We used placenta samples from 224 births received from Hawaii Biorepository (HiBR) between 2006 and 2013, comprising 129 healthy full-term controls and 95 severe PE samples. The average absolute placental TL was calculated using the quantitative polymerase chain reaction (qPCR) technique. We utilized multiple linear regressions to associate placental TL with severe PE and other demographic, clinical and physiological data. The outcome demonstrates that the placental TL of severe PE cases did not significantly differ from that of healthy controls. Instead, there is a strong correlation between gestational age and placenta TL shortening. Placental TL also exhibits racial differences: (1) Latino moms' TL is significantly longer than non-Latino mothers' (p=0.009). (2) Caucasian patients with severe PE have shorter TL than non-Caucasian patients (p=0.0037). This work puts the long-standing question of whether severe PE influences placental TL to rest. Placental TL is not related to severe PE but is negatively associated with gestational age and is also affected by race.


Subject(s)
Placenta , Pre-Eclampsia , Pregnancy , Humans , Female , Pre-Eclampsia/genetics , Retrospective Studies , Gestational Age , Telomere Shortening , Telomere
5.
FASEB Bioadv ; 4(10): 631-637, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36238363

ABSTRACT

Organotypic skin cultures represent in vitro models of skin which can be used for disease modeling, tissue engineering, and screening applications. Non-human collagen is currently the gold standard material used for the construction of the supporting matrix, however, its clinical applications are limited due to its xenogeneic origin. We have developed a novel peptide hydrogel-based skin construct that shows a pluristratified epidermis, basement membrane, and dermal compartment after 3 weeks of in vitro culture. Peptide-based constructs were compared to collagen-based constructs and stratification marker expression was histologically higher in peptide constructs than in collagen constructs. Transepithelial electrical resistance also showed mature barrier function in peptide constructs. This study presents a novel application of the self-assembling peptide hydrogel in a defined xeno-free in vitro system.

6.
Nutr Health ; : 2601060221109668, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35754336

ABSTRACT

Background: There is limited data on diet quality during pregnancy and its impact on hypertensive disorders of pregnancy (HDP). Aim: Examine the association with diet quality and development of HDP in an Asian and Pacific Islander Cohort Methods: Pregnant women from the 4 largest ethnic groups in Hawai'i were recruited for participation. Participants completed a food frequency questionnaire during each trimester. Adherence to three diet quality indices (DQIs) were scored-The Healthy Eating Index (HEI), The Alternate Mediterranean Diet score (aMED), and the Dietary approaches to Stop Hypertension (DASH) score. Mean scores were compared among those who did and did not develop HDP. Logistic Regression models were used to examine the association between diet quality and HDP accounting for confounders (age, parity, obesity, ethnicity, gestational weight gain). Results: Among 55 participants with complete follow-up, there was a high incidence of HDP (23%). There was no significant change of DQIs over time. Non-Hispanic White participants had higher DQIs than Filipinas, Japanese, or Native Hawaiians (not statistically significant). Across gestation, participants who did not have HDP had better diet quality than those who did. Logistic regression showed that HEI and DASH indices are predictive of HDP development, with the high DASH diet score having the greatest reduced odds. Every point higher of DASH diet score portended approximately 30% reduced odds of developing HDP. Conclusions: The DASH diet had the strongest association with reduced odds of HDP, but better diet quality in any of the indices was also predictive.

7.
JID Innov ; 2(2): 100096, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35265936

ABSTRACT

Epidermolysis bullosa is a group of severe skin blistering disorders, which currently have no cure. The pathology of epidermolysis bullosa is recognized as having an inflammatory component, but the role of inflammation in different epidermolysis bullosa disorders is unclear. Epidermolysis bullosa simplex (EBS) is primarily caused by sequence variants in keratin genes; its most severe form, EBS generalized severe, is characterized by aggregates of keratin proteins, and cell models of EBS generalized severe show constitutively elevated stress. IFN-γ is a major mediator of inflammation, and we show that the addition of IFN-γ alone to disease model keratinocytes promotes keratin aggregation, decreases cell-cell junctions, delays wound closure, and reduces cell proliferation. IFN-γ exposure weakens the intercellular cohesion of monolayers on mechanical stress, with IFN-γ-treated EBS monolayers more fragmented than IFN-γ-treated wild-type monolayers. A humanized monoclonal antibody to IFN-γ neutralized the detrimental effects on keratinocytes, restoring cell proliferation, increasing cell-cell adhesion, accelerating wound closure in the presence of IFN-γ, and reducing IFN-γ-mediated keratin aggregation in EBS cells. These suggest that treatment with IFN-γ blocking antibodies may constitute a promising new therapeutic strategy for patients with EBS and may also have ameliorating effects on other inflammatory skin diseases.

8.
PLoS One ; 16(12): e0261137, 2021.
Article in English | MEDLINE | ID: mdl-34928995

ABSTRACT

AIMS: Genome-wide association studies have shown an increased risk of type-2-diabetes (T2DM) in patients who carry single nucleotide polymorphisms in several genes. We investigated whether the same gene loci confer a risk for gestational diabetes mellitus (GDM) in women from Hawaii, and in particular, Pacific Islander and Filipino populations. METHODS: Blood was collected from 291 women with GDM and 734 matched non-diabetic controls (Pacific Islanders: 71 GDM, 197 non-diabetic controls; Filipinos: 162 GDM, 395 controls; Japanese: 58 GDM, 142 controls). Maternal DNA was used to genotype and show allele frequencies of 25 different SNPs mapped to 18 different loci. RESULTS: After adjusting for age, BMI, parity and gravidity by multivariable logistic regression, several SNPs showed significant associations with GDM and were ethnicity specific. In particular, SNPs rs1113132 (EXT2), rs1111875 (HHEX), rs2237892 (KCNQ1), rs2237895 (KCNQ1), rs10830963 (MTNR1B) and rs13266634 (SLC30A8) showed significant associations with GDM in Filipinos. For Japanese, SNPs rs4402960 (IGFBP2) and rs2237892 (KCNQ1) were significantly associated with GDM. For Pacific Islanders, SNPs rs10830963 (MTNR1B) and rs13266634 (SLC30A8) showed significant associations with GDM. Individually, none of the SNPs showed a consistent association with GDM across all three investigated ethnicities. CONCLUSION: Several SNPs associated with T2DM are found to confer increased risk for GDM in a multiethnic cohort in Hawaii.


Subject(s)
Diabetes, Gestational/epidemiology , Ethnicity/genetics , Genetic Markers , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Adolescent , Adult , Case-Control Studies , Diabetes, Gestational/genetics , Female , Gene Frequency , Genotype , Hawaii/epidemiology , Humans , Pregnancy , Risk Factors , Young Adult
9.
J Lipid Res ; 62: 100118, 2021.
Article in English | MEDLINE | ID: mdl-34547287

ABSTRACT

Preeclampsia is a pregnancy-specific syndrome characterized by hypertension and proteinuria after 20 weeks of gestation. However, it is not well understood what lipids are involved in the development of this condition, and even less is known how these lipids mediate its formation. To reveal the relationship between lipids and preeclampsia, we conducted lipidomic profiling of maternal sera of 44 severe preeclamptic and 20 healthy pregnant women from a multiethnic cohort in Hawaii. Correlation network analysis showed that oxidized phospholipids have increased intercorrelations and connections in preeclampsia, whereas other lipids, including triacylglycerols, have reduced network correlations and connections. A total of 10 lipid species demonstrate significant changes uniquely associated with preeclampsia but not any other clinical confounders. These species are from the lipid classes of lysophosphatidylcholines, phosphatidylcholines (PCs), cholesteryl esters, phosphatidylethanolamines, lysophosphatidylethanolamines, and ceramides. A random forest classifier built on these lipids shows highly accurate and specific prediction (F1 statistic = 0.94; balanced accuracy = 0.88) of severe preeclampsia, demonstrating their potential as biomarkers for this condition. These lipid species are enriched in dysregulated biological pathways, including insulin signaling, immune response, and phospholipid metabolism. Moreover, causality inference shows that various PCs and lysophosphatidylcholines mediate severe preeclampsia through PC 35:1e. Our results suggest that the lipidome may play a role in the pathogenesis and serve as biomarkers of severe preeclampsia.


Subject(s)
Lipidomics , Lipids/blood , Pre-Eclampsia/blood , Adult , Cohort Studies , Female , Humans , Pregnancy , Severity of Illness Index
10.
BMC Pregnancy Childbirth ; 21(1): 558, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399704

ABSTRACT

BACKGROUND: Consumption of a diet with high adherence to a Mediterranean diet pattern (MDP) has been associated with a favorable gastrointestinal tract (GIT) microbiome. A healthy GIT microbiome in pregnancy, as defined by increased alpha diversity, is associated with lower chance of adverse perinatal outcomes. This study aimed to evaluate the impact of adherence to an MDP on GIT microbial diversity longitudinally throughout pregnancy. METHODS: Adherence to MDP was scored by the Alternate Mediterranean (aMED) Diet Quality Score, after being applied to a validated Food Frequency Questionnaire. Association of aMED Scores with GIT alpha diversity profiles were compared linearly and across time using a linear mixed model, including covariates of age, body mass index (BMI), ethnicity, and parity. RESULTS: Forty-one participants of Filipino, Japanese, Native Hawaiian, and Non-Hispanic White descent provided dietary information and microbiome samples during each trimester of pregnancy. Alpha diversity profiles changed over gestation, with decreased microbial diversity in the third trimester. aMED scores positively correlated with Chao1 Index and Observed Species Number (r = 0.244, p = 0.017, and r = 0.233, p = 0.023, respectively). The strongest association was detected in the third trimester (Chao 1: r = 0.43, p = 0.020, Observed Species Number: r = 0.41, p = 0.026). Participants with higher aMED scores had higher relative abundance of Acidaminoacaeae at the family level (p = 0.0169), as well as higher abundance of several species known to increase production of short chain fatty acids within the GIT. CONCLUSIONS: Adherence to MDP pattern is associated with increased maternal GIT microbial diversity, and promotes the abundance of bacteria that produce short chain fatty acids. Increased consumption of fruits, vegetables and legumes with low red meat consumption were key components driving this association. The effect of nutrition however, was less of an effect than pregnancy itself. Further studies are needed to determine if adherence to a Mediterranean diet translates not only into microbial health, but also into reduced risk of adverse pregnancy outcomes.


Subject(s)
Diet, Mediterranean , Gastrointestinal Microbiome/physiology , Adolescent , Adult , Asian , Female , Hawaii/epidemiology , Humans , Japan/ethnology , Middle Aged , Philippines/ethnology , Pregnancy , Pregnancy Complications/epidemiology , Pregnancy Trimesters , White People , Young Adult
11.
FASEB J ; 35(4): e21524, 2021 04.
Article in English | MEDLINE | ID: mdl-33742690

ABSTRACT

Maternal pre-pregnancy obesity may have an impact on both maternal and fetal health. We examined the microbiome recovered from placentas in a multi-ethnic maternal pre-pregnant obesity cohort, through an optimized microbiome protocol to enrich low bacterial biomass samples. We found that the microbiomes recovered from the placentas of obese pre-pregnant mothers are less abundant and less diverse when compared to those from mothers of normal pre-pregnancy weight. Microbiome richness also decreases from the maternal side to the fetal side, demonstrating heterogeneity by geolocation within the placenta. In summary, our study shows that the microbiomes recovered from the placentas are associated with pre-pregnancy obesity. IMPORTANCE: Maternal pre-pregnancy obesity may have an impact on both maternal and fetal health. The placenta is an important organ at the interface of the mother and fetus, and supplies nutrients to the fetus. We report that the microbiomes enriched from the placentas of obese pre-pregnant mothers are less abundant and less diverse when compared to those from mothers of normal pre-pregnancy weight. More over, the microbiomes also vary by geolocation within the placenta.


Subject(s)
Microbiota/physiology , Obesity, Maternal/metabolism , Obesity/complications , Placenta/metabolism , Adult , Cohort Studies , Female , Fetal Development/physiology , Humans , Pregnancy , Pregnancy Complications/etiology
12.
Reprod Sci ; 28(3): 828-837, 2021 03.
Article in English | MEDLINE | ID: mdl-33107014

ABSTRACT

Intrauterine growth restriction (IUGR) is an obstetrical complication with an increased risk of perinatal mortality and morbidity. The uterus, once considered to be a sterile environment, has now been described in recent microbiome studies to harbor diverse commensal placenta microbiota, as well as potentially pathogenic flora known to cause infection. Therefore, in this pilot study, we tested whether IUGR was associated with changes to the reproductive microbiome. The reproductive microbiome was surveyed using 16S sequencing (20 IUGR, 20 controls). Alpha and beta diversity were compared, and differential taxa features associated with IUGR were identified. Microbial screening of the placenta demonstrated a diverse range of flora predominantly including Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes. Neither alpha- nor beta-diversity was significantly different by IUGR status. However, at the taxa level, IUGR patients had significantly higher prevalence of Neisseriaceae, mucosal ß-hemolytic bacteria known to uptake iron-bound host proteins including hemoglobin. Moreover, the increase in anaerobic bacteria such as Desulfovibrio reflects the emergence of a hypoxic environment in the IUGR placenta. Further analysis of the reproductive microbiome of IUGR samples showed lower levels of H202-producing Bifidobacterium and Lactobacillus that switch from respiration to fermentation, a less energetic metabolic process, when oxygen levels decrease. Source tracking analysis showed that the placental microbial contents were predominantly contributed from an oral source, as compared to a gut or vaginal source. Our results suggest that the reproductive microbiome profiles may, in the future, constitute potential biomarkers for fetal health during pregnancy, while Neisseriaceae may constitute promising therapeutic targets for IUGR treatment.


Subject(s)
Bacteria/isolation & purification , Fetal Growth Retardation/microbiology , Microbiota , Placenta/microbiology , Reproduction , Adult , Bacteria/metabolism , Bacterial Load , Case-Control Studies , Energy Metabolism , Female , Fermentation , Fetal Growth Retardation/diagnosis , Humans , Pilot Projects , Pregnancy , Ribotyping , Young Adult
13.
Heliyon ; 6(10): e04759, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33043158

ABSTRACT

INTRODUCTION: To determine how often placenta cell lines 3A (tPA-30-1) and 3A-sub E [post crisis of 3A (tPA-30-1)] are appropriately cited, or identified, as "term"-gestation placental cell lines in medical literature. METHODS: We performed a literature search on two databases, PubMed and One Search, using the terms "3A (tPA-30-1)," "3Asub-E," "3AsubE," "tPA-30-1," "tPA30-1," and "3A AND (placenta OR placental OR trophoblast OR trophoblastic) AND (cell OR line OR cell line)." Of the 218 citations retrieved, 181 were excluded due to duplication, article content irrelevance or lack of access to a full manuscript. The remaining 37 citations were thoroughly reviewed for 1)the presence of a full citation as designated by the supplier, and 2)the identification of the placental lines as "term." RESULTS: Of the 37 eligible citations included in the study, five demonstrated complete identifications of the placental cell lines of interest, while 32 demonstrated partial identifications that failed to match the designations provided by the manufacturer. Furthermore, of the 37 citations, eight accurately identified the cell lines as "term," while 27 lacked any description of gestational age, and two incorrectly identified them as "first trimester" cell lines. Overall, only three citations contained both a full citation and correct identification as a "term" placenta cell line. DISCUSSION: Only 5 of the 37 (13.5%) publications demonstrated a complete citation and only 8 publications accurately identified the gestational age of the placenta cell line as "term". Such findings confirm the need for a representative set of standards for the documentation of cell lines to improve the quality of publications in the scientific community.

14.
Placenta ; 92: 17-27, 2020 03.
Article in English | MEDLINE | ID: mdl-32056783

ABSTRACT

Preeclampsia is a medical condition affecting 5-10% of pregnancies. It has serious effects on the health of the pregnant mother and developing fetus. While possible causes of preeclampsia are speculated, there is no consensus on its etiology. The advancement of big data and high-throughput technologies enables to study preeclampsia at the new and systematic level. In this review, we first highlight the recent progress made in the field of preeclampsia research using various omics technology platforms, including epigenetics, genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics. Next, we integrate the results in individual omic level studies, and show that despite the lack of coherent biomarkers in all omics studies, inhibin is a potential preeclamptic biomarker supported by GWAS, transcriptomics and DNA methylation evidence. Using network analysis on the biomarkers of all the literature reviewed here, we identify four striking sub-networks with clear biological functions supported by previous molecular-biology and clinical observations. In summary, omics integration approach offers the promise to understand molecular mechanisms in preeclampsia.


Subject(s)
Genomics , Pre-Eclampsia/genetics , Epigenesis, Genetic , Female , Humans , Inhibins/genetics , Inhibins/metabolism , Pre-Eclampsia/metabolism , Pregnancy , Proteome , Transcriptome
15.
J Proteome Res ; 19(4): 1361-1374, 2020 04 03.
Article in English | MEDLINE | ID: mdl-31975597

ABSTRACT

Maternal obesity has become a growing global health concern that may predispose the offspring to medical conditions later in life. However, the metabolic link between maternal prepregnant obesity and healthy offspring has not yet been fully elucidated. In this study, we conducted a case-control study using a coupled untargeted and targeted metabolomic approach from the newborn cord blood metabolomes associated with a matched maternal prepregnant obesity cohort of 28 cases and 29 controls. The subjects were recruited from multiethnic populations in Hawaii, including rarely reported Native Hawaiian and other Pacific Islanders (NHPI). We found that maternal obesity was the most important factor contributing to differences in cord blood metabolomics. Using an elastic net regularization-based logistic regression model, we identified 29 metabolites as potential early-life biomarkers manifesting intrauterine effect of maternal obesity, with accuracy as high as 0.947 after adjusting for clinical confounding (maternal and paternal age, ethnicity, parity, and gravidity). We validated the model results in a subsequent set of samples (N = 30) with an accuracy of 0.822. Among the metabolites, six metabolites (galactonic acid, butenylcarnitine, 2-hydroxy-3-methylbutyric acid, phosphatidylcholine diacyl C40:3, 1,5-anhydrosorbitol, and phosphatidylcholine acyl-alkyl 40:3) were individually and significantly different between the maternal obese and normal-weight groups. Interestingly, hydroxy-3-methylbutyric acid showed significantly higher levels in cord blood from the NHPI group compared to that from Asian and Caucasian groups. In summary, significant associations were observed between maternal prepregnant obesity and offspring metabolomic alternation at birth, revealing the intergenerational impact of maternal obesity.


Subject(s)
Fetal Blood , Mothers , Birth Weight , Body Mass Index , Case-Control Studies , Female , Humans , Infant, Newborn , Metabolomics , Obesity , Pregnancy
17.
PLoS One ; 14(9): e0222672, 2019.
Article in English | MEDLINE | ID: mdl-31557190

ABSTRACT

INTRODUCTION: Preeclampsia is a medical condition complicated with hypertension and proteinuria during pregnancy. While preeclampsia affects approximately 5% of pregnancies, it remains without a cure. In addition, women who had preeclampsia during pregnancy have been reported to have an increased risk for cardiovascular disease later in life. However, the disease etiology and molecular mechanisms remain poorly understood. The paucity in the literature on preeclampsia associated maternal cardiovascular risk in different ethnic populations also present a need for more research. Therefore, the objective of this study was to identify cardiovascular/metabolic single nucleotide polymorphisms (SNPs), genes, and regulatory pathways associated with early-onset preeclampsia. MATERIALS AND METHODS: We compared maternal DNAs from 31 women with early-onset preeclampsia with those from a control group of 29 women without preeclampsia who delivered full-term normal birthweight infants. Women with multiple gestations and/or known medical disorders associated with preeclampsia (pregestational diabetes, chronic hypertension, renal disease, hyperthyroidism, and lupus) were excluded. The MetaboChip genotyping array with approximately 197,000 SNPs associated with metabolic and cardiovascular traits was used. Single nucleotide polymorphism analysis was performed using the SNPAssoc program in R. The Truncated Product Method was used to identify significantly associated genes. Ingenuity Pathway Analysis and Ingenuity Causal Network Analysis were used to identify significantly associated disease processes and regulatory gene networks respectively. RESULTS: The early-onset preeclampsia group included 45% Filipino, 26% White, 16% other Asian, and 13% Native Hawaiian and other Pacific Islanders, which did not differ from the control group. There were no SNPs associated with early-onset preeclampsia after correction for multiple comparisons. However, through gene-based tests, 68 genes and 23 cardiovascular disease-related processes were found to be significantly associated. Associated gene regulatory networks involved cellular movement, cardiovascular disease, and inflammatory disease. CONCLUSIONS: Multiple cardiovascular genes and diseases demonstrate associations with early-onset preeclampsia. This unfolds new areas of research regarding the genetic determinants of early-onset preeclampsia and their relation to future cardiovascular disease.


Subject(s)
Cardiovascular Diseases/genetics , Genes/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Pre-Eclampsia/genetics , Adult , Case-Control Studies , Female , Humans , Pregnancy
18.
J Tissue Eng ; 8: 2041731417730467, 2017.
Article in English | MEDLINE | ID: mdl-29051808

ABSTRACT

Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.

19.
J Vis Exp ; (114)2016 08 22.
Article in English | MEDLINE | ID: mdl-27585070

ABSTRACT

The glycoprotein family of collagens represents the main structural proteins in the human body, and are key components of biomaterials used in modern tissue engineering. A technical bottleneck is the deposition of collagen in vitro, as it is notoriously slow, resulting in sub-optimal formation of connective tissue and subsequent tissue cohesion, particularly in skin models. Here, we describe a method which involves the addition of differentially-sized sucrose co-polymers to skin cultures to generate macromolecular crowding (MMC), which results in a dramatic enhancement of collagen deposition. Particularly, dermal fibroblasts deposited a significant amount of collagen I/IV/VII and fibronectin under MMC in comparison to controls. The protocol also describes a method to decellularize crowded cell layers, exposing significant amounts of extracellular matrix (ECM) which were retained on the culture surface as evidenced by immunocytochemistry. Total matrix mass and distribution pattern was studied using interference reflection microscopy. Interestingly, fibroblasts, keratinocytes and co-cultures produced cell-derived matrices (CDM) of varying composition and morphology. CDM could be used as "bio-scaffolds" for secondary cell seeding, where the current use of coatings or scaffolds, typically from xenogenic animal sources, can be avoided, thus moving towards more clinically relevant applications. In addition, this protocol describes the application of MMC during the submerged phase of a 3D-organotypic skin co-culture model which was sufficient to enhance ECM deposition in the dermo-epidermal junction (DEJ), in particular, collagen VII, the major component of anchoring fibrils. Electron microscopy confirmed the presence of anchoring fibrils in cultures developed with MMC, as compared to controls. This is significant as anchoring fibrils tether the dermis to the epidermis, hence, having a pre-formed mature DEJ may benefit skin graft recipients in terms of graft stability and overall wound healing. Furthermore, culture time was condensed from 5 weeks to 3 weeks to obtain a mature construct, when using MMC, reducing costs.


Subject(s)
Collagen/metabolism , Macromolecular Substances/metabolism , Tissue Engineering/methods , Animals , Cells, Cultured , Coculture Techniques/methods , Dermis/metabolism , Epidermis/metabolism , Fibroblasts , Humans , Keratinocytes , Skin/cytology
20.
Tissue Eng Part A ; 21(1-2): 183-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25058150

ABSTRACT

Skin is one of the most accessible tissues for experimental biomedical sciences, and cultured skin cells represent one of the longest-running clinical applications of stem cell therapy. However, culture-generated skin mimetic multicellular structures are still limited in their application by the time taken to develop these constructs in vitro and by their incomplete differentiation. The development of a functional dermal-epidermal junction (DEJ) is one of the most sought after aspects of cultured skin, and one of the hardest to recreate in vitro. At the DEJ, dermal fibroblasts and epidermal keratinocytes interact to form an interlinked basement membrane of extracellular matrix (ECM), which forms as a concerted action of both keratinocytes and fibroblasts. Successful formation of this basement membrane is essential for take and stability of cultured skin autografts. We studied interactive matrix production by monocultures and cocultures of primary human keratinocytes and fibroblasts in an attempt to improve the efficiency of basement membrane production in culture using mixed macromolecular crowding (mMMC); resulting ECM were enriched with the deposition of collagens I, IV, fibronectin, and laminin 332 (laminin 5) and also in collagen VII, the anchoring fibril component. Our in vitro data point to fibroblasts, rather than keratinocytes, as the major cellular contributors of the DEJ. Not only did we find more collagen VII production and deposition by fibroblasts in comparison to keratinocytes, but also observed that decellularized fibroblast ECM stimulated the production and deposition of collagen VII by keratinocytes, over and above that of keratinocyte monocultures. In confrontation cultures, keratinocytes and fibroblasts showed spontaneous segregation and demarcation of cell boundaries by DEJ protein deposition. Finally, mMMC was used in a classical organotypic coculture protocol with keratinocytes seeded over fibroblast-containing collagen gels. Applied during the submerged phase, mMMC was sufficient to accelerate the emergence of collagen VII along the de novo DEJ, together with stronger transglutaminase activity in the neoepidermis. Our findings corroborate the role of fibroblasts as important players in producing collagen VII and inducing collagen VII deposition in the DEJ, and that macromolecular crowding leads to organotypic epidermal differentiation in tissue culture in a significantly condensed time frame.


Subject(s)
Dermis/metabolism , Epidermis/metabolism , Extracellular Matrix/metabolism , Macromolecular Substances/metabolism , Tissue Culture Techniques/methods , Animals , Coculture Techniques , Collagen Type VII/metabolism , Female , Fibroblasts/cytology , Humans , Keratinocytes/cytology , Microscopy, Interference , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...