Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 743: 140700, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758829

ABSTRACT

In life cycle assessment (LCA), temporal considerations are usually lost during the life cycle inventory calculation, resulting in an aggregated "snapshot" of potential impacts. Disregarding such temporal considerations has previously been underlined as an important source of uncertainty, but a growing number of approaches have been developed to tackle this issue. Nevertheless, their adoption by LCA practitioners is still uncommon, which raises concerns about the representativeness of current LCA results. Furthermore, a lack of consistency can be observed in the used terms for discussions on temporal considerations. The purpose of this review is thus to search for common ground and to identify the current implementation challenges while also proposing development pathways. This paper introduces a glossary of the most frequently used terms related to temporal considerations in LCA to build a common understanding of key concepts and to facilitate discussions. A review is also performed on current solutions for temporal considerations in different LCA phases (goal and scope definition, life cycle inventory analysis and life cycle impact assessment), analysing each temporal consideration for its relevant conceptual developments in LCA and its level of operationalisation. We then present a potential stepwise approach and development pathways to address the current challenges of implementation for dynamic LCA (DLCA). Three key focal areas for integrating temporal considerations within the LCA framework are discussed: i) define the temporal scope over which temporal distributions of emissions are occurring, ii) use calendar-specific information to model systems and associated impacts, and iii) select the appropriate level of temporal resolution to describe the variations of flows and characterisation factors. Addressing more temporal considerations within a DLCA framework is expected to reduce uncertainties and increase the representativeness of results, but possible trade-offs between additional data collection efforts and the increased value of results from DLCAs should be kept in mind.

2.
Sci Total Environ ; 718: 135278, 2020 May 20.
Article in English | MEDLINE | ID: mdl-31839321

ABSTRACT

Low carbon strategies recently focus on soil organic carbon (SOC) sequestration potentials from agriculture and forestry, while Life Cycle Assessment (LCA) increasingly becomes the framework of choice to estimate the environmental impacts of these activities. Classic LCA is limited to static carbon neutral approaches, disregarding dynamic SOC flows and their time-dependent GHG contributions. To overcome such limitation, the purpose of this study is to model SOC flows associated with agricultural land use (LU) and the provision of agricultural substrates to transport biofuels, thus generating dynamic inventories and comparatively assessing energy policy scenarios and their climate consequences in the context of dynamic LCA. The proposed framework allows computing SOC from annual and perennial species under specific management practices (e.g. residue removal rates, organic fertiliser use). The results associated with the implementation of three energy policies and two accounting philosophies (C-neutral and C-complete) show that shifting energy pathways towards advanced biofuels reduces overall resource consumption, LU and GHG emissions. The French 2015 Energy Transition for Green Growth Act (LTECV) leads towards higher mitigation targets compared with business-as-usual (BAU) and intermediate (15BIO) policy constraints. C-neutral results show reduced radiative forcing effects by 10% and 34% for 15BIO and LTECV respectively, with respect to BAU. C-complete (i.e. dynamic assessment of all biogenic- and fossil-sourced C flows) results reveal further mitigation potentials across policies, whereof 50%-65% can be attributed to temporal C sequestration in perennial rhizomes. A sensitivity analysis suggests important SOC variations due to temperature increase (+2°C) and changes in residue removal rates. Both parameters affect mitigation and the latter also LU, by a factor of -0.56 to + 5. This article highlights the importance of SOC modelling in the context of LU in LCA, which is usually disregarded, as SOC is considered only in the context of land use change (LUC).


Subject(s)
Soil , Agriculture , Carbon , Carbon Sequestration , Crops, Agricultural , France
3.
Data Brief ; 23: 103841, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31372468

ABSTRACT

The data and analyses presented support the research article entitled "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France" (Albers et al., 2019). Carbon sequestration and storage in forestry products (e.g. transport fuels) is sought as a climate change mitigation option. The data presented support and inform dynamic modelling approaches to predict biomass growth and carbon fixation dynamics, of a tree or forest stand, over specific rotation lengths. Data consists of species-specific yield tables, parameters for non-linear growth models and allometric equations. Non-linear growth models and allometric equations are listed and described. National statistics and surveys of the wood supply chain serve to identify main tree species, standing wood volumes and distributions within specific geographies; here corresponding to managed forests in France. All necessary data and methods for the computation of the annual fixation flows are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...