Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Article in English | MEDLINE | ID: mdl-38661605

ABSTRACT

BACKGROUND: Recent clinical studies have indicated the presence of localized electrical abnormalities in idiopathic ventricular fibrillation and J-wave syndrome patients. OBJECTIVES: This study aims to characterize the specific electrical signatures of localized repolarization and conduction heterogeneities and their respective role in vulnerability to arrhythmias. METHODS: Optical mapping was performed in porcine right ventricles with local: 1) repolarization shortening; 2) conduction slowing; or 3) structural heterogeneity induced by locally perfusing: 1) pinacidil (20 µmol/L, n = 13); or 2) flecainide (2 µmol/L, n = 13) via an epicardial catheter; or 3) by local epicardial tissue destruction (9 radiofrequency lesions n = 12). Electrograms were recorded (n = 5 in each group) and spontaneous and induced arrhythmias were quantified and optically mapped. RESULTS: Electrograms were normal in (1) but showed local fragmentation in 40% of preparations in (2) with greater effects observed at high pacing frequencies dependent on the wavefront direction. In (3), the structural substrate alone increased the width and number of peaks in the electrograms, and addition of flecainide induced pronounced fragmentation (≥3 peaks and ≥70 ms) in all cases. Occurrence of spontaneous arrhythmias was significantly increased in (1) and (2) (P < 0.0001 and 0.05, respectively, vs baseline) and were triggered by ectopies. Vulnerability to arrhythmias at high pacing frequencies (≥2 Hz) was the lowest in (1) and greatest in (2). CONCLUSIONS: Microstructural substrates have the most pronounced impact on electrograms, especially when combined with sodium channel blockers, whereas local action potential duration shortening does not lead to electrogram fragmentation even though it is associated with the highest prevalence of spontaneous arrhythmias.

2.
Arterioscler Thromb Vasc Biol ; 44(1): e1-e18, 2024 01.
Article in English | MEDLINE | ID: mdl-38031839

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction is proposed to be caused by endothelial dysfunction in cardiac microvessels. Our goal was to identify molecular and cellular mechanisms underlying the development of cardiac microvessel disease and diastolic dysfunction in the setting of type 2 diabetes. METHODS: We used Leprdb/db (leptin receptor-deficient) female mice as a model of type 2 diabetes and heart failure with preserved ejection fraction and identified Hhipl1 (hedgehog interacting protein-like 1), which encodes for a decoy receptor for HH (hedgehog) ligands as a gene upregulated in the cardiac vascular fraction of diseased mice. RESULTS: We then used Dhh (desert HH)-deficient mice to investigate the functional consequences of impaired HH signaling in the adult heart. We found that Dhh-deficient mice displayed increased end-diastolic pressure while left ventricular ejection fraction was comparable to that of control mice. This phenotype was associated with a reduced exercise tolerance in the treadmill test, suggesting that Dhh-deficient mice do present heart failure. At molecular and cellular levels, impaired cardiac relaxation in DhhECKO mice was associated with a significantly decreased PLN (phospholamban) phosphorylation on Thr17 (threonine 17) and an alteration of sarcomeric shortening ex vivo. Besides, as expected, Dhh-deficient mice exhibited phenotypic changes in their cardiac microvessels including a prominent prothrombotic phenotype. Importantly, aspirin therapy prevented the occurrence of both diastolic dysfunction and exercise intolerance in these mice. To confirm the critical role of thrombosis in the pathophysiology of diastolic dysfunction, we verified Leprdb/db also displays increased cardiac microvessel thrombosis. Moreover, consistently, with Dhh-deficient mice, we found that aspirin treatment decreased end-diastolic pressure and improved exercise tolerance in Leprdb/db mice. CONCLUSIONS: Altogether, these results demonstrate that microvessel thrombosis may participate in the pathophysiology of heart failure with preserved ejection fraction.


Subject(s)
Cardiomyopathies , Diabetes Mellitus, Type 2 , Heart Failure , Thrombosis , Ventricular Dysfunction, Left , Animals , Female , Mice , Ventricular Function, Left , Stroke Volume , Diabetes Mellitus, Type 2/complications , Ventricular Dysfunction, Left/genetics , Hedgehog Proteins , Microvessels , Thrombosis/complications , Aspirin
3.
J Cardiovasc Magn Reson ; 25(1): 78, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38093273

ABSTRACT

BACKGROUND: While the microstructure of the left ventricle (LV) has been largely described, only a few studies investigated the right ventricular insertion point (RVIP). It was accepted that the aggregate cardiomyocytes organization was much more complex due to the intersection of the ventricular cavities but a precise structural characterization in the human heart was lacking even if clinical phenotypes related to right ventricular wall stress or arrhythmia were observed in this region. METHODS: MRI-derived anatomical imaging (150 µm3) and diffusion tensor imaging (600 µm3) were performed in large mammalian whole hearts (human: N = 5, sheep: N = 5). Fractional anisotropy, aggregate cardiomyocytes orientations and tractography were compared within both species. Aggregate cardiomyocytes orientation on one ex-vivo sheep whole heart was then computed using structure tensor imaging (STI) from 21 µm isotropic acquisition acquired with micro computed tomography (MicroCT) imaging. Macroscopic and histological examination were performed. Lastly, experimental cardiomyocytes orientation distribution was then compared to the usual rule-based model using electrophysiological (EP) modeling. Electrical activity was modeled with the monodomain formulation. RESULTS: The RVIP at the level of the inferior ventricular septum presented a unique arrangement of aggregate cardiomyocytes. An abrupt, mid-myocardial change in cardiomyocytes orientation was observed, delimiting a triangle-shaped region, present in both sheep and human hearts. FA's histogram distribution (mean ± std: 0.29 ± 0.06) of the identified region as well as the main dimension (22.2 mm ± 5.6 mm) was found homogeneous across samples and species. Averaged volume is 0.34 cm3 ± 0.15 cm3. Both local activation time (LAT) and morphology of pseudo-ECGs were strongly impacted with delayed LAT and change in peak-to-peak amplitude in the simulated wedge model. CONCLUSION: The study was the first to describe the 3D cardiomyocytes architecture of the basal inferoseptal left ventricle region in human hearts and identify the presence of a well-organized aggregate cardiomyocytes arrangement and cardiac structural discontinuities. The results might offer a better appreciation of clinical phenotypes like RVIP-late gadolinium enhancement or uncommon idiopathic ventricular arrhythmias (VA) originating from this region.


Subject(s)
Diffusion Tensor Imaging , Heart Ventricles , Humans , Animals , Sheep , Heart Ventricles/diagnostic imaging , Diffusion Tensor Imaging/methods , Contrast Media , X-Ray Microtomography , Predictive Value of Tests , Gadolinium , Myocytes, Cardiac/physiology , Arrhythmias, Cardiac , Mammals
4.
Cells ; 12(12)2023 06 17.
Article in English | MEDLINE | ID: mdl-37371124

ABSTRACT

The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel that is mostly permeable to calcium (Ca2+), which participates in intracellular Ca2+ handling in cardiac cells. It is widely expressed through the body and is activated by a large spectrum of physicochemical stimuli, conferring it a role in a variety of sensorial and physiological functions. Within the cardiovascular system, TRPV4 expression is reported in cardiomyocytes, endothelial cells (ECs) and smooth muscle cells (SMCs), where it modulates mitochondrial activity, Ca2+ homeostasis, cardiomyocytes electrical activity and contractility, cardiac embryonic development and fibroblast proliferation, as well as vascular permeability, dilatation and constriction. On the other hand, TRPV4 channels participate in several cardiac pathological processes such as the development of cardiac fibrosis, hypertrophy, ischemia-reperfusion injuries, heart failure, myocardial infarction and arrhythmia. In this manuscript, we provide an overview of TRPV4 channel implications in cardiac physiology and discuss the potential of the TRPV4 channel as a therapeutic target against cardiovascular diseases.


Subject(s)
Myocardial Infarction , Transient Receptor Potential Channels , Female , Pregnancy , Humans , Transient Receptor Potential Channels/metabolism , TRPV Cation Channels/metabolism , Endothelial Cells/metabolism , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism
5.
Br J Pharmacol ; 180(21): 2802-2821, 2023 11.
Article in English | MEDLINE | ID: mdl-37351910

ABSTRACT

BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) is a cardiovascular disease characterised by an increase in pulmonary arterial (PA) resistance leading to right ventricular (RV) failure. Reactive oxygen species (ROS) play a major role in PH. OP2113 is a drug with beneficial effects on cardiac injuries that targets mitochondrial ROS. The aim of the study was to address the in vivo therapeutic effect of OP2113 in PH. EXPERIMENTAL APPROACH: PH was induced by 3 weeks of chronic hypoxia (CH-PH) in rats treated with OP2113 or its vehicle via subcutaneous osmotic mini-pumps. Haemodynamic parameters and both PA and heart remodelling were assessed. Reactivity was quantified in PA rings and in RV or left ventricular (LV) cardiomyocytes. Oxidative stress was detected by electron paramagnetic resonance and western blotting. Mitochondrial mass and respiration were measured by western blotting and oxygraphy, respectively. KEY RESULTS: In CH-PH rats, OP2113 reduced the mean PA pressure, PA remodelling, PA hyperreactivity in response to 5-HT, the contraction slowdown in RV and LV and increased the mitochondrial mass in RV. Interestingly, OP2113 had no effect on haemodynamic parameters, both PA and RV wall thickness and PA reactivity, in control rats. Whereas oxidative stress was evidenced by an increase in protein carbonylation in CH-PH, this was not affected by OP2113. CONCLUSION AND IMPLICATIONS: Our study provides evidence for a selective protective effect of OP2113 in vivo on alterations in both PA and RV from CH-PH rats without side effects in control rats.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Ventricular Dysfunction, Right , Rats , Animals , Hypertension, Pulmonary/metabolism , Reactive Oxygen Species/metabolism , Heart Ventricles/metabolism , Pulmonary Artery , Heart Failure/metabolism , Hypoxia/complications , Hypoxia/drug therapy , Hypoxia/metabolism , Ventricular Dysfunction, Right/metabolism , Ventricular Function, Right , Disease Models, Animal
6.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1248-1261, 2023 08.
Article in English | MEDLINE | ID: mdl-37227351

ABSTRACT

BACKGROUND: Brugada syndrome is a significant cause of sudden cardiac death (SCD), but the underlying mechanisms remain hypothetical. OBJECTIVES: This study aimed to elucidate this knowledge gap through detailed ex vivo human heart studies. METHODS: A heart was obtained from a 15-year-old adolescent boy with normal electrocardiogram who experienced SCD. Postmortem genotyping was performed, and clinical examinations were done on first-degree relatives. The right ventricle was optically mapped, followed by high-field magnetic resonance imaging and histology. Connexin-43 and NaV1.5 were localized by immunofluorescence, and RNA and protein expression levels were studied. HEK-293 cell surface biotinylation assays were performed to examine NaV1.5 trafficking. RESULTS: A Brugada-related SCD diagnosis was established for the donor because of a SCN5A Brugada-related variant (p.D356N) inherited from his mother, together with a concomitant NKX2.5 variant of unknown significance. Optical mapping demonstrated a localized epicardial region of impaired conduction near the outflow tract, in the absence of repolarization alterations and microstructural defects, leading to conduction blocks and figure-of-8 patterns. NaV1.5 and connexin-43 localizations were normal in this region, consistent with the finding that the p.D356N variant does not affect the trafficking, nor the expression of NaV1.5. Trends of decreased NaV1.5, connexin-43, and desmoglein-2 protein levels were noted; however, the RT-qPCR results suggested that the NKX2-5 variant was unlikely to be involved. CONCLUSIONS: This study demonstrates for the first time that SCD associated with a Brugada-SCN5A variant can be caused by localized functionally, not structurally, impaired conduction.


Subject(s)
Brugada Syndrome , Male , Adolescent , Humans , HEK293 Cells , Electrocardiography , Cardiac Conduction System Disease , Death, Sudden, Cardiac , Connexins
7.
Biomolecules ; 13(5)2023 04 23.
Article in English | MEDLINE | ID: mdl-37238597

ABSTRACT

Electroporation is a biophysical phenomenon involving an increase in cell membrane permeability to molecules after a high-pulsed electric field is applied to the tissue. Currently, electroporation is being developed for non-thermal ablation of cardiac tissue to treat arrhythmias. Cardiomyocytes have been shown to be more affected by electroporation when oriented with their long axis parallel to the applied electric field. However, recent studies demonstrate that the preferentially affected orientation depends on the pulse parameters. To gain better insight into the influence of cell orientation on electroporation with different pulse parameters, we developed a time-dependent nonlinear numerical model where we calculated the induced transmembrane voltage and pores creation in the membrane due to electroporation. The numerical results show that the onset of electroporation is observed at lower electric field strengths for cells oriented parallel to the electric field for pulse durations ≥10 µs, and cells oriented perpendicular for pulse durations ~100 ns. For pulses of ~1 µs duration, electroporation is not very sensitive to cell orientation. Interestingly, as the electric field strength increases beyond the onset of electroporation, perpendicular cells become more affected irrespective of pulse duration. The results obtained using the developed time-dependent nonlinear model are corroborated by in vitro experimental measurements. Our study will contribute to the process of further development and optimization of pulsed-field ablation and gene therapy in cardiac treatments.


Subject(s)
Electroporation , Nonlinear Dynamics , Electroporation/methods , Electroporation Therapies , Electricity , Cell Membrane Permeability
8.
Circ Arrhythm Electrophysiol ; 15(11): e011131, 2022 11.
Article in English | MEDLINE | ID: mdl-36306333

ABSTRACT

BACKGROUND: Irreversible electroporation is an energy form utilizing high-voltage pulsed electric field, leading to cellular homeostasis disruption and cell death. Recently, irreversible electroporation has shown promising results for the treatment of cardiac arrhythmias. However, reversible and irreversible effects of pulsed electric field on cardiac myocytes remain poorly understood. Here, we evaluated the influence of a monophasic single electric pulse (EP) on the contractility, Ca2+ homeostasis and recovery of cardiac myocytes. METHODS: Isolated rat left ventricular myocytes were electroporated using single monophasic EP of different durations and voltages. Sarcomere length and intracellular Ca2+ were simultaneously monitored for up to 20 minutes after EP application in Fura-2 loaded left ventricular myocytes. Lethal voltage thresholds were determined using 100 µs and 10 ms pulses and by discriminating cell orientation with respect to the electric field. RESULTS: Electroporation led to an immediate increase in intracellular Ca2+ which was dependent upon the voltage delivered to the cell. Intermediate-voltage EP (140 V, 100 µs) increased sarcomere shortening, Ca2+ transient amplitude, and diastolic Ca2+ level measured 1 minute post-EP. Although sarcomere shortening returned to pre-EP level within 5 minutes, Ca2+ transient amplitude decreased further below pre-EP level and diastolic Ca2+ level remained elevated within 20 minutes post-EP. Spontaneous contractions were observed after sublethal EP application but their frequency decreased progressively within 20 minutes. Lethal EP voltage threshold was lower in myocytes oriented perpendicular than parallel to the electric field using 100 µs pulses while an opposite effect was found using 10 ms pulses. CONCLUSIONS: Sublethal EP affected rat left ventricular myocytes contractility and disrupted Ca2+ homeostasis as a function of the EP voltage. Moreover, EP-induced lethality was preceded by a large increase in intracellular Ca2+ and was dependent upon the EP duration, amplitude and left ventricular myocytes orientation with respect to the electric field. These findings provide new insights into the effect of pulsed electric field on cardiac myocytes.


Subject(s)
Calcium , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , Calcium/metabolism , Heart Ventricles/metabolism , Electroporation , Homeostasis
9.
J Imaging ; 8(4)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35448222

ABSTRACT

INTRODUCTION AND OBJECTIVE: Nowadays, investigations of heart physiology and pathophysiology rely more and more upon image analysis, whether for the detection and characterization of events in single cells or for the mapping of events and their characteristics across an entire tissue. These investigations require extensive skills in image analysis and/or expensive software, and their reproducibility may be a concern. Our objective was to build a robust, reliable and open-source software tool to quantify excitation-contraction related experimental data at multiple scales, from single isolated cells to the whole heart. METHODS AND RESULTS: A free and open-source ImageJ plugin, Spiky, was developed to detect and analyze peaks in experimental data streams. It allows rapid and easy analysis of action potentials, intracellular calcium transient and contraction data from cardiac research experiments. As shown in the provided examples, both classical bi-dimensional data (XT signals) and video data obtained from confocal microscopy and optical mapping experiments (XYT signals) can be analyzed. Spiky was written in ImageJ Macro Language and JAVA, and works under Windows, Mac and Linux operating systems. CONCLUSION: Spiky provides a complete working interface to process and analyze cardiac physiology research data.

10.
Am J Physiol Heart Circ Physiol ; 322(6): H936-H952, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35302879

ABSTRACT

Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution.NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.


Subject(s)
Diffusion Tensor Imaging , Ventricular Septum , Animals , Diamond , Dogs , Heart Ventricles , Mammals , Myocardium , Rats , Sheep , Swine , Ventricular Septum/diagnostic imaging
11.
Prog Biophys Mol Biol ; 168: 18-32, 2022 01.
Article in English | MEDLINE | ID: mdl-34126113

ABSTRACT

Recent developments in clearing and microscopy enable 3D imaging with cellular resolution up to the whole organ level. These methods have been used extensively in neurobiology, but their uptake in other fields has been much more limited. Application of this approach to the human heart and effective use of the data acquired present challenges of scale and complexity. Four interlinked issues need to be addressed: 1) efficient clearing and labelling of heart tissue, 2) fast microscopic imaging of human-scale samples, 3) handling and processing of multi-terabyte 3D images, and 4) extraction of structural information in computationally tractable structure-based models of cardiac function. Preliminary studies show that each of these requirements can be achieved with the appropriate application and development of existing technologies.


Subject(s)
Imaging, Three-Dimensional , Microscopy , Computer Simulation , Computers , Heart/diagnostic imaging , Humans , Optical Imaging
12.
Heart Rhythm ; 18(10): 1647-1654, 2021 10.
Article in English | MEDLINE | ID: mdl-34260987

ABSTRACT

BACKGROUND: Purkinje ectopics (PurkEs) are major triggers of idiopathic ventricular fibrillation (VF). Identifying clinical factors associated with specific PurkE characteristics could yield insights into the mechanisms of Purkinje-mediated arrhythmogenicity. OBJECTIVE: The purpose of this study was to examine the associations of clinical, environmental, and genetic factors with PurkE origin in patients with PurkE-initiated idiopathic VF. METHODS: Consecutive patients with PurkE-initiated idiopathic VF from 4 arrhythmia referral centers were included. We evaluated demographic characteristics, medical history, clinical circumstances associated with index VF events, and electrophysiological characteristics of PurkEs. An electrophysiology study was performed in most patients to confirm the Purkinje origin. RESULTS: Eighty-three patients were included (mean age 38 ± 14 years; 44 [53%] women), of whom 32 had a history of syncope. Forty-four patients had VF at rest. PurkEs originated from the right ventricle (RV) in 41 patients (49%), from the left ventricle (LV) in 36 (44%), and from both ventricles in 6 (7%). Seasonal and circadian distributions of VF episodes were similar according to PurkE origin. The clinical characteristics of patients with RV vs LV PurkE origins were similar, except for sex. RV PurkEs were more frequent in men than in women (76% vs 24%), whereas LV and biventricular PurkEs were more frequent in women (81% vs 19% and 83% vs 17%, respectively) (P < .0001). CONCLUSION: PurkEs triggering idiopathic VF originate dominantly from the RV in men and from the LV or both ventricles in women, adding to other sex-related arrhythmias such as Brugada syndrome or long QT syndrome. Sex-based factors influencing Purkinje arrhythmogenicity warrant investigation.


Subject(s)
Electrocardiography , Heart Ventricles/physiopathology , Purkinje Fibers/physiopathology , Risk Assessment/methods , Ventricular Fibrillation/epidemiology , Ventricular Premature Complexes/epidemiology , Adult , Coronary Angiography , Echocardiography , Female , France/epidemiology , Heart Ventricles/diagnostic imaging , Humans , Incidence , Magnetic Resonance Imaging, Cine/methods , Male , Purkinje Fibers/diagnostic imaging , Retrospective Studies , Risk Factors , Sex Distribution , Sex Factors , Ventricular Fibrillation/diagnosis , Ventricular Fibrillation/etiology , Ventricular Premature Complexes/complications , Ventricular Premature Complexes/diagnosis
13.
PLoS Comput Biol ; 17(6): e1009137, 2021 06.
Article in English | MEDLINE | ID: mdl-34191797

ABSTRACT

The pig is commonly used as an experimental model of human heart disease, including for the study of mechanisms of arrhythmia. However, there exist differences between human and porcine cellular electrophysiology: The pig action potential (AP) has a deeper phase-1 notch, a longer duration at 50% repolarization, and higher plateau potentials than human. Ionic differences underlying the AP include larger rapid delayed-rectifier and smaller inward-rectifier K+-currents (IKr and IK1 respectively) in humans. AP steady-state rate-dependence and restitution is steeper in pigs. Porcine Ca2+ transients can have two components, unlike human. Although a reliable computational model for human ventricular myocytes exists, one for pigs is lacking. This hampers translation from results obtained in pigs to human myocardium. Here, we developed a computational model of the pig ventricular cardiomyocyte AP using experimental datasets of the relevant ionic currents, Ca2+-handling, AP shape, AP duration restitution, and inducibility of triggered activity and alternans. To properly capture porcine Ca2+ transients, we introduced a two-step process with a faster release in the t-tubular region, followed by a slower diffusion-induced release from a non t-tubular subcellular region. The pig model behavior was compared with that of a human ventricular cardiomyocyte (O'Hara-Rudy) model. The pig, but not the human model, developed early afterdepolarizations (EADs) under block of IK1, while IKr block led to EADs in the human but not in the pig model. At fast rates (pacing cycle length = 400 ms), the human cell model was more susceptible to spontaneous Ca2+ release-mediated delayed afterdepolarizations (DADs) and triggered activity than pig. Fast pacing led to alternans in human but not pig. Developing species-specific models incorporating electrophysiology and Ca2+-handling provides a tool to aid translating antiarrhythmic and arrhythmogenic assessment from the bench to the clinic.


Subject(s)
Models, Cardiovascular , Myocytes, Cardiac/physiology , Action Potentials , Animals , Arrhythmias, Cardiac/physiopathology , Calcium Signaling , Computational Biology , Computer Simulation , Electrophysiological Phenomena , Heart Ventricles/cytology , Humans , In Vitro Techniques , Models, Animal , Patch-Clamp Techniques , Sus scrofa , Translational Research, Biomedical
14.
MAGMA ; 34(4): 605-618, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33484367

ABSTRACT

OBJECTIVES: We investigate the possibility to exploit high-field MRI to acquire 3D images of Purkinje network which plays a crucial role in cardiac function. Since Purkinje fibers (PF) have a distinct cellular structure and are surrounded by connective tissue, we investigated conventional contrast mechanisms along with the magnetization transfer (MT) imaging technique to improve image contrast between ventricular structures of differing macromolecular content. METHODS: Three fixed porcine ventricular samples were used with free-running PFs on the endocardium. T1, T2*, T2, and M0 were evaluated on 2D slices for each sample at 9.4 T. MT parameters were optimized using hard pulses with different amplitudes, offset frequencies and durations. The cardiac structure was assessed through 2D and 3D T1w images with isotropic resolutions of 150 µm. Histology, immunofluorescence, and qPCR were performed to analyze collagen contents of cardiac tissue and PF. RESULTS: An MT preparation module of 350 ms duration inserted into the sequence with a B1 = 10 µT and frequency offset = 3000 Hz showed the best contrast, approximately 0.4 between PFs and myocardium. Magnetization transfer ratio (MTR) appeared higher in the cardiac tissue (MTR = 44.7 ± 3.5%) than in the PFs (MTR = 25.2 ± 6.3%). DISCUSSION: MT significantly improves contrast between PFs and ventricular myocardium and appears promising for imaging the 3D architecture of the Purkinje network.


Subject(s)
Magnetic Resonance Imaging , Purkinje Fibers , Animals , Imaging, Three-Dimensional , Purkinje Fibers/diagnostic imaging , Swine
15.
JMIR Mhealth Uhealth ; 7(11): e14730, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31769758

ABSTRACT

BACKGROUND: Although the increasing availability of mobile health (mHealth) apps may enable people with rheumatic and musculoskeletal diseases (RMDs) to better self-manage their health, there is a general lack of evidence on ways to ensure appropriate development and evaluation of apps. OBJECTIVE: This study aimed to obtain an overview on existing mHealth apps for self-management in patients with RMDs, focusing on content and development methods. METHODS: A search was performed up to December 2017 across 5 databases. For each publication relevant to an app for RMDs, information on the disease, purpose, content, and development strategies was extracted and qualitatively assessed. RESULTS: Of 562 abstracts, 32 were included in the analysis. Of these 32 abstracts, 11 (34%) referred to an app linked to a connected device. Most of the apps targeted rheumatoid arthritis (11/32, 34%). The top three aspects addressed by the apps were pain (23/32, 71%), fatigue (15/32, 47%), and physical activity (15/32, 47%). The development process of the apps was described in 84% (27/32) of the articles and was of low to moderate quality in most of the cases. Despite most of the articles having been published within the past two years, only 5 apps were still commercially available at the time of our search. Moreover, only very few studies showed improvement of RMD outcome measures. CONCLUSIONS: The development process of most apps was of low or moderate quality in many studies. Owing to the increasing RMD patients' willingness to use mHealth apps for self-management, optimal standards and quality assurance of new apps are mandatory.


Subject(s)
Mobile Applications/trends , Musculoskeletal Diseases/therapy , Rheumatic Diseases/therapy , Self-Management/methods , Humans , Musculoskeletal Diseases/psychology , Rheumatic Diseases/psychology
16.
Can J Cardiol ; 35(12): 1762-1771, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31711822

ABSTRACT

Tetralogy of Fallot is the most common cyanotic congenital heart disease. Despite ongoing improvements in the initial surgical repair, there are lingering concerns regarding the long-term outcomes that may be complicated by right ventricular dysfunction, right ventricular dyssynchrony, and sudden cardiac death. The mechanisms leading to these late complications remain incompletely understood. Experimental animal models have been developed as preclinical steps to gain better insight into the pathophysiology of diseases and to develop new therapeutic strategies. This article summarizes the various types of experimental animal models of repaired tetralogy of Fallot published to date in the literature, with the aim of achieving a greater understanding of the deleterious mechanisms that may lead to these known late and sometimes lethal complications. In addition to analysing the type of animals that can be used according to a given study's objectives, needs, and constraints, the present review also evaluates the type of dysfunction that can be reproduced in our model according to the research objectives, as well as the different types of studies in which these models can be used. In view of all that, we propose a decision algorithm to create an animal model of repaired tetralogy of Fallot. This synthesis should furthermore help in the development of future studies and in the design of new experimental models, thus allowing greater insight into this disease, while not forgetting the ultimate goal of broadening future therapeutic measures to reduce the morbidity and mortality of this prevalent congenital heart disease.


Subject(s)
Cardiac Catheterization/methods , Cardiac Surgical Procedures/methods , Disease Models, Animal , Tetralogy of Fallot/surgery , Animals , Cardiac Surgical Procedures/mortality , Dogs , Forecasting , Humans , Mice , Rabbits , Risk Assessment , Sheep , Survival Rate , Swine , Thoracotomy/methods , Treatment Outcome
17.
Heart Rhythm ; 16(5): 781-790, 2019 05.
Article in English | MEDLINE | ID: mdl-30391571

ABSTRACT

Early repolarization indicates a distinct electrocardiographic phenotype affecting the junction between the QRS complex and the ST segment in inferolateral leads (inferolateral J-wave syndromes). It has been considered a benign electrocardiographic variant for decades, but recent clinical studies have demonstrated its arrhythmogenicity in a small subset, supported by experimental studies showing transmural dispersion of repolarization. Here we review the current knowledge and the issues of risk stratification that limit clinical management. In addition, we report on new mapping data of patients refractory to pharmacologic treatment using high-density electrogram mapping at the time of inscription of J wave. These data demonstrate that distinct substrates, delayed depolarization, and abnormal early repolarization underlie inferolateral J-wave syndromes, with significant implications. Finally, based on these data, we propose a new simplified mechanistic classification of sudden cardiac deaths without apparent structural heart disease.


Subject(s)
Arrhythmias, Cardiac , Death, Sudden, Cardiac , Electrocardiography/methods , Electrophysiologic Techniques, Cardiac/methods , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Heart Conduction System/physiopathology , Humans , Risk Assessment
18.
J Thorac Dis ; 10(Suppl 24): S2966-S2974, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30305957

ABSTRACT

As for any preclinical development of new implantable device, bench testing has been followed by experimental studies on large animal models for the development of atrial septal defect closure devices. Various models have been used according to studied species (porcine, ovine or canine model) and whether the septal defect was percutaneously or surgically created. Animal models of percutaneous atrial septal defect closure aim to assess the healing process and device endothelialisation, as well as the development of magnetic resonance imaging guided procedures, the short-term effects of volume overload on right ventricular contractility through haemodynamic studies and the understanding of other complications such as nickel hypersensitivity. Each technique has its own advantages and drawbacks, and leads to different punch-related, acute septal injuries that could have an effect on the healing process after device implantation. It has been suggested that some long-term, major device-related complications such as thrombosis or infective endocarditis may be associated with an inappropriate healing process or insufficient endothelialisation of the device, leading industrial companies to pay a great deal of attention to the healing process. Tissue reactions in animal models were shown to adequately reproduce the healing response after device implantation in humans, with an endothelial device coverage observed as early as 30 days after implantation and complete after 3 to 6 months. Research perspectives may evaluate both animal models and in-vitro studies in parallel with a view to clarify the endothelialisation process using human endothelial cells through in-vitro experiments. Self-sensing device for detecting the presence of endothelial cells on the surface of intracardiac occluders and high-resolution imaging techniques that could non-invasively assess the complete endothelialisation of a device would also be promising tools which would need large animal models studies before their clinical application.

19.
Circ Arrhythm Electrophysiol ; 11(8): e005913, 2018 08.
Article in English | MEDLINE | ID: mdl-30354313

ABSTRACT

Background Papillary muscles are an important source of ventricular tachycardia (VT). Yet little is known about the role of the right ventricular (RV) endocavity structure, the moderator band (MB). The aim of this study was to determine the characteristics of the MB that may predispose to arrhythmia substrates. Methods Ventricular wedge preparations with intact MBs were studied from humans (n=2) and sheep (n=15; 40-50 kg). RV endocardium was optically mapped, and electrical recordings were measured along the MB and septum. S1S2 pacing of the RV free wall, MB, or combined S1-RV S2-MB sites were assessed. Human (n=2) and sheep (n=4) MB tissue constituents were assessed histologically. Results The MB structure was remarkably organized as 2 excitable, yet uncoupled compartments of myocardium and Purkinje. In humans, action potential duration heterogeneity between MB and RV myocardium was found (324.6±12.0 versus 364.0±8.4 ms; P<0.0001). S1S2-MB pacing induced unidirectional propagation via MB myocardium, permitting sustained macroreentrant VT. In sheep, the incidence of VT for RV, MB, and S1-RV S2-MB pacing was 1.3%, 5.1%, and 10.3%. Severing the MB led to VT termination, confirming a primary arrhythmic role. Inducible preparations had shorter action potential duration in the MB than RV (259.3±45.2 versus 300.7±38.5 ms; P<0.05), whereas noninducible preparations showed no difference (312.0±30.3 versus 310.0±24.6 ms, respectively). Conclusions The MB presents anatomic and electrical compartmentalization between myocardium and Purkinje fibers, providing a substrate for macroreentry. The vulnerability to sustain VT via this mechanism is dependent on MB structure and action potential duration gradients between the RV free wall and MB.


Subject(s)
Action Potentials , Heart Rate , Papillary Muscles/physiopathology , Tachycardia, Ventricular/etiology , Animals , Cardiac Pacing, Artificial , Computer Simulation , Electrophysiologic Techniques, Cardiac , Humans , In Vitro Techniques , Models, Cardiovascular , Myocardium/pathology , Papillary Muscles/pathology , Purkinje Fibers/physiopathology , Sheep, Domestic , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Time Factors , Voltage-Sensitive Dye Imaging
20.
Circ Arrhythm Electrophysiol ; 11(10): e006059, 2018 10.
Article in English | MEDLINE | ID: mdl-30354410

ABSTRACT

BACKGROUND: Ventricular arrhythmias are frequent in patients with repaired tetralogy of Fallot (rTOF), but their origin and underlying mechanisms remain unclear. In this study, the involvement of left ventricular (LV) electrical and structural remodeling was assessed in an animal model mimicking rTOF sequelae. METHODS: Piglets underwent a tetralogy of Fallot repair-like surgery (n=6) or were sham operated (Sham, n=5). Twenty-three weeks post-surgery, cardiac function was assessed in vivo by magnetic resonance imaging. Electrophysiological properties were characterized by optical mapping. LV fibrosis and connexin-43 localization were assessed on histological sections and protein expression assessed by Western Blot. RESULTS: Right ventricular dysfunction was evident, whereas LV function remained unaltered in rTOF pigs. Optical mapping showed longer action potential duration on the rTOF LV epicardium and endocardium. Epicardial conduction velocity was significantly reduced in the longitudinal direction in rTOF LVs but not in the transverse direction compared with Sham. An elevated collagen content was found in LV basal and apical sections from rTOF pigs. Moreover, a trend for connexin-43 lateralization with no change in protein expression was found in the LV of rTOFs. Finally, rTOF LVs had a lower threshold for arrhythmia induction using incremental pacing protocols. CONCLUSIONS: We found an arrhythmogenic substrate with prolonged heterogeneous action potential duration and reduced conduction velocity in the LV of rTOF pigs. This remodeling precedes LV dysfunction and is likely to contribute to ventricular arrhythmias and sudden cardiac death in patients with rTOF.


Subject(s)
Arrhythmias, Cardiac/etiology , Cardiac Surgical Procedures/adverse effects , Heart Ventricles/physiopathology , Tetralogy of Fallot/surgery , Ventricular Function, Left , Ventricular Remodeling , Action Potentials , Animals , Animals, Newborn , Arrhythmias, Cardiac/diagnostic imaging , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Connexin 43/metabolism , Disease Models, Animal , Fibrosis , Heart Rate , Heart Ventricles/diagnostic imaging , Heart Ventricles/metabolism , Magnetic Resonance Imaging , Sus scrofa , Tetralogy of Fallot/physiopathology , Time Factors , Voltage-Sensitive Dye Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...