Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
JAMIA Open ; 6(2): ooad032, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37181728

ABSTRACT

With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs.

2.
Genome Med ; 14(1): 70, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35765100

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is a worldwide scourge caused by both genetic and environmental risk factors that disproportionately afflicts communities of color. Leveraging existing large-scale genome-wide association studies (GWAS), polygenic risk scores (PRS) have shown promise to complement established clinical risk factors and intervention paradigms, and improve early diagnosis and prevention of T2D. However, to date, T2D PRS have been most widely developed and validated in individuals of European descent. Comprehensive assessment of T2D PRS in non-European populations is critical for equitable deployment of PRS to clinical practice that benefits global populations. METHODS: We integrated T2D GWAS in European, African, and East Asian populations to construct a trans-ancestry T2D PRS using a newly developed Bayesian polygenic modeling method, and assessed the prediction accuracy of the PRS in the multi-ethnic Electronic Medical Records and Genomics (eMERGE) study (11,945 cases; 57,694 controls), four Black cohorts (5137 cases; 9657 controls), and the Taiwan Biobank (4570 cases; 84,996 controls). We additionally evaluated a post hoc ancestry adjustment method that can express the polygenic risk on the same scale across ancestrally diverse individuals and facilitate the clinical implementation of the PRS in prospective cohorts. RESULTS: The trans-ancestry PRS was significantly associated with T2D status across the ancestral groups examined. The top 2% of the PRS distribution can identify individuals with an approximately 2.5-4.5-fold of increase in T2D risk, which corresponds to the increased risk of T2D for first-degree relatives. The post hoc ancestry adjustment method eliminated major distributional differences in the PRS across ancestries without compromising its predictive performance. CONCLUSIONS: By integrating T2D GWAS from multiple populations, we developed and validated a trans-ancestry PRS, and demonstrated its potential as a meaningful index of risk among diverse patients in clinical settings. Our efforts represent the first step towards the implementation of the T2D PRS into routine healthcare.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Bayes Theorem , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Humans , Prospective Studies , Risk Factors
3.
BMC Med Inform Decis Mak ; 22(1): 23, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35090449

ABSTRACT

INTRODUCTION: Currently, one of the commonly used methods for disseminating electronic health record (EHR)-based phenotype algorithms is providing a narrative description of the algorithm logic, often accompanied by flowcharts. A challenge with this mode of dissemination is the potential for under-specification in the algorithm definition, which leads to ambiguity and vagueness. METHODS: This study examines incidents of under-specification that occurred during the implementation of 34 narrative phenotyping algorithms in the electronic Medical Record and Genomics (eMERGE) network. We reviewed the online communication history between algorithm developers and implementers within the Phenotype Knowledge Base (PheKB) platform, where questions could be raised and answered regarding the intended implementation of a phenotype algorithm. RESULTS: We developed a taxonomy of under-specification categories via an iterative review process between two groups of annotators. Under-specifications that lead to ambiguity and vagueness were consistently found across narrative phenotype algorithms developed by all involved eMERGE sites. DISCUSSION AND CONCLUSION: Our findings highlight that under-specification is an impediment to the accuracy and efficiency of the implementation of current narrative phenotyping algorithms, and we propose approaches for mitigating these issues and improved methods for disseminating EHR phenotyping algorithms.


Subject(s)
Algorithms , Electronic Health Records , Genomics , Humans , Knowledge Bases , Phenotype
4.
J Am Med Inform Assoc ; 29(4): 643-651, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34849976

ABSTRACT

OBJECTIVE: Integrating and harmonizing disparate patient data sources into one consolidated data portal enables researchers to conduct analysis efficiently and effectively. MATERIALS AND METHODS: We describe an implementation of Informatics for Integrating Biology and the Bedside (i2b2) to create the Mass General Brigham (MGB) Biobank Portal data repository. The repository integrates data from primary and curated data sources and is updated weekly. The data are made readily available to investigators in a data portal where they can easily construct and export customized datasets for analysis. RESULTS: As of July 2021, there are 125 645 consented patients enrolled in the MGB Biobank. 88 527 (70.5%) have a biospecimen, 55 121 (43.9%) have completed the health information survey, 43 552 (34.7%) have genomic data and 124 760 (99.3%) have EHR data. Twenty machine learning computed phenotypes are calculated on a weekly basis. There are currently 1220 active investigators who have run 58 793 patient queries and exported 10 257 analysis files. DISCUSSION: The Biobank Portal allows noninformatics researchers to conduct study feasibility by querying across many data sources and then extract data that are most useful to them for clinical studies. While institutions require substantial informatics resources to establish and maintain integrated data repositories, they yield significant research value to a wide range of investigators. CONCLUSION: The Biobank Portal and other patient data portals that integrate complex and simple datasets enable diverse research use cases. i2b2 tools to implement these registries and make the data interoperable are open source and freely available.


Subject(s)
Biological Specimen Banks , Information Storage and Retrieval , Data Collection , Humans , Informatics
5.
JAMIA Open ; 4(2): ooab036, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34113801

ABSTRACT

Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that are critical to COVID-19 research. The ontology contains over 50 000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for severe acute respiratory syndrome coronavirus 2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of 9 academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https://github.com/shyamvis/ACT-COVID-Ontology, will be useful for harmonizing EHRs for COVID-19 research beyond the ACT network.

6.
medRxiv ; 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33791734

ABSTRACT

Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that that are critical to COVID-19 research. The ontology contains over 50,000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for SARS-CoV-2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of nine academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https://github.com/shyamvis/ACT-COVID-Ontology, will be useful for harmonizing EHRs for COVID-19 research beyond the ACT network.

7.
NPJ Digit Med ; 4(1): 70, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33850243

ABSTRACT

Chronic Kidney Disease (CKD) represents a slowly progressive disorder that is typically silent until late stages, but early intervention can significantly delay its progression. We designed a portable and scalable electronic CKD phenotype to facilitate early disease recognition and empower large-scale observational and genetic studies of kidney traits. The algorithm uses a combination of rule-based and machine-learning methods to automatically place patients on the staging grid of albuminuria by glomerular filtration rate ("A-by-G" grid). We manually validated the algorithm by 451 chart reviews across three medical systems, demonstrating overall positive predictive value of 95% for CKD cases and 97% for healthy controls. Independent case-control validation using 2350 patient records demonstrated diagnostic specificity of 97% and sensitivity of 87%. Application of the phenotype to 1.3 million patients demonstrated that over 80% of CKD cases are undetected using ICD codes alone. We also demonstrated several large-scale applications of the phenotype, including identifying stage-specific kidney disease comorbidities, in silico estimation of kidney trait heritability in thousands of pedigrees reconstructed from medical records, and biobank-based multicenter genome-wide and phenome-wide association studies.

8.
Int J Obes (Lond) ; 45(1): 155-169, 2021 01.
Article in English | MEDLINE | ID: mdl-32952152

ABSTRACT

BACKGROUND/OBJECTIVES: Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170 MC4R variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of MC4R variants in large cohort of different ancestries, we evaluated the MC4R coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus. SUBJECTS/METHODS: The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping. RESULTS: Targeted sequencing data of MC4R revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m2. In GWAS analysis, in addition to known risk haplotype upstream of MC4R (best variant rs6567160 (P = 5.36 × 10-25, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (P = 6.23 × 10-08, Beta = -0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI. CONCLUSIONS: MC4R screening in a large eMERGE cohort confirmed many previous findings, extend the MC4R pleotropic effects, and discovered additional MC4R rare alleles that probably contribute to obesity.


Subject(s)
Genetic Variation/genetics , Genome-Wide Association Study , Obesity , Receptor, Melanocortin, Type 4/genetics , Adult , Aged , Body Mass Index , Cohort Studies , Female , Humans , Male , Middle Aged , Obesity/epidemiology , Obesity/genetics
9.
J Biomed Inform ; 99: 103293, 2019 11.
Article in English | MEDLINE | ID: mdl-31542521

ABSTRACT

BACKGROUND: Implementation of phenotype algorithms requires phenotype engineers to interpret human-readable algorithms and translate the description (text and flowcharts) into computable phenotypes - a process that can be labor intensive and error prone. To address the critical need for reducing the implementation efforts, it is important to develop portable algorithms. METHODS: We conducted a retrospective analysis of phenotype algorithms developed in the Electronic Medical Records and Genomics (eMERGE) network and identified common customization tasks required for implementation. A novel scoring system was developed to quantify portability from three aspects: Knowledge conversion, clause Interpretation, and Programming (KIP). Tasks were grouped into twenty representative categories. Experienced phenotype engineers were asked to estimate the average time spent on each category and evaluate time saving enabled by a common data model (CDM), specifically the Observational Medical Outcomes Partnership (OMOP) model, for each category. RESULTS: A total of 485 distinct clauses (phenotype criteria) were identified from 55 phenotype algorithms, corresponding to 1153 customization tasks. In addition to 25 non-phenotype-specific tasks, 46 tasks are related to interpretation, 613 tasks are related to knowledge conversion, and 469 tasks are related to programming. A score between 0 and 2 (0 for easy, 1 for moderate, and 2 for difficult portability) is assigned for each aspect, yielding a total KIP score range of 0 to 6. The average clause-wise KIP score to reflect portability is 1.37 ±â€¯1.38. Specifically, the average knowledge (K) score is 0.64 ±â€¯0.66, interpretation (I) score is 0.33 ±â€¯0.55, and programming (P) score is 0.40 ±â€¯0.64. 5% of the categories can be completed within one hour (median). 70% of the categories take from days to months to complete. The OMOP model can assist with vocabulary mapping tasks. CONCLUSION: This study presents firsthand knowledge of the substantial implementation efforts in phenotyping and introduces a novel metric (KIP) to measure portability of phenotype algorithms for quantifying such efforts across the eMERGE Network. Phenotype developers are encouraged to analyze and optimize the portability in regards to knowledge, interpretation and programming. CDMs can be used to improve the portability for some 'knowledge-oriented' tasks.


Subject(s)
Electronic Health Records/classification , Medical Informatics/methods , Algorithms , Genomics , Humans , Phenotype , Retrospective Studies
10.
BMC Med ; 17(1): 135, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31311600

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver illness with a genetically heterogeneous background that can be accompanied by considerable morbidity and attendant health care costs. The pathogenesis and progression of NAFLD is complex with many unanswered questions. We conducted genome-wide association studies (GWASs) using both adult and pediatric participants from the Electronic Medical Records and Genomics (eMERGE) Network to identify novel genetic contributors to this condition. METHODS: First, a natural language processing (NLP) algorithm was developed, tested, and deployed at each site to identify 1106 NAFLD cases and 8571 controls and histological data from liver tissue in 235 available participants. These include 1242 pediatric participants (396 cases, 846 controls). The algorithm included billing codes, text queries, laboratory values, and medication records. Next, GWASs were performed on NAFLD cases and controls and case-only analyses using histologic scores and liver function tests adjusting for age, sex, site, ancestry, PC, and body mass index (BMI). RESULTS: Consistent with previous results, a robust association was detected for the PNPLA3 gene cluster in participants with European ancestry. At the PNPLA3-SAMM50 region, three SNPs, rs738409, rs738408, and rs3747207, showed strongest association (best SNP rs738409 p = 1.70 × 10- 20). This effect was consistent in both pediatric (p = 9.92 × 10- 6) and adult (p = 9.73 × 10- 15) cohorts. Additionally, this variant was also associated with disease severity and NAFLD Activity Score (NAS) (p = 3.94 × 10- 8, beta = 0.85). PheWAS analysis link this locus to a spectrum of liver diseases beyond NAFLD with a novel negative correlation with gout (p = 1.09 × 10- 4). We also identified novel loci for NAFLD disease severity, including one novel locus for NAS score near IL17RA (rs5748926, p = 3.80 × 10- 8), and another near ZFP90-CDH1 for fibrosis (rs698718, p = 2.74 × 10- 11). Post-GWAS and gene-based analyses identified more than 300 genes that were used for functional and pathway enrichment analyses. CONCLUSIONS: In summary, this study demonstrates clear confirmation of a previously described NAFLD risk locus and several novel associations. Further collaborative studies including an ethnically diverse population with well-characterized liver histologic features of NAFLD are needed to further validate the novel findings.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Adult , Aged , Body Mass Index , Case-Control Studies , Community Networks/organization & administration , Community Networks/statistics & numerical data , Disease Progression , Electronic Health Records/organization & administration , Electronic Health Records/statistics & numerical data , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics/organization & administration , Genomics/statistics & numerical data , Humans , Lipase/genetics , Male , Membrane Proteins/genetics , Middle Aged , Morbidity , Non-alcoholic Fatty Liver Disease/epidemiology , Phenotype , Polymorphism, Single Nucleotide , Signal Transduction/genetics
11.
J Biomed Inform ; 96: 103253, 2019 08.
Article in English | MEDLINE | ID: mdl-31325501

ABSTRACT

BACKGROUND: Implementing clinical phenotypes across a network is labor intensive and potentially error prone. Use of a common data model may facilitate the process. METHODS: Electronic Medical Records and Genomics (eMERGE) sites implemented the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model across their electronic health record (EHR)-linked DNA biobanks. Two previously implemented eMERGE phenotypes were converted to OMOP and implemented across the network. RESULTS: It was feasible to implement the common data model across sites, with laboratory data producing the greatest challenge due to local encoding. Sites were then able to execute the OMOP phenotype in less than one day, as opposed to weeks of effort to manually implement an eMERGE phenotype in their bespoke research EHR databases. Of the sites that could compare the current OMOP phenotype implementation with the original eMERGE phenotype implementation, specific agreement ranged from 100% to 43%, with disagreements due to the original phenotype, the OMOP phenotype, changes in data, and issues in the databases. Using the OMOP query as a standard comparison revealed differences in the original implementations despite starting from the same definitions, code lists, flowcharts, and pseudocode. CONCLUSION: Using a common data model can dramatically speed phenotype implementation at the cost of having to populate that data model, though this will produce a net benefit as the number of phenotype implementations increases. Inconsistencies among the implementations of the original queries point to a potential benefit of using a common data model so that actual phenotype code and logic can be shared, mitigating human error in reinterpretation of a narrative phenotype definition.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnosis , Databases, Factual , Diabetes Mellitus, Type 2/diagnosis , Electronic Health Records , Data Collection , Humans , Medical Informatics , National Human Genome Research Institute (U.S.) , Observational Studies as Topic , Outcome Assessment, Health Care , Phenotype , Research Design , Software , United States
12.
J Am Med Inform Assoc ; 25(11): 1540-1546, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30124903

ABSTRACT

Electronic health record (EHR) algorithms for defining patient cohorts are commonly shared as free-text descriptions that require human intervention both to interpret and implement. We developed the Phenotype Execution and Modeling Architecture (PhEMA, http://projectphema.org) to author and execute standardized computable phenotype algorithms. With PhEMA, we converted an algorithm for benign prostatic hyperplasia, developed for the electronic Medical Records and Genomics network (eMERGE), into a standards-based computable format. Eight sites (7 within eMERGE) received the computable algorithm, and 6 successfully executed it against local data warehouses and/or i2b2 instances. Blinded random chart review of cases selected by the computable algorithm shows PPV ≥90%, and 3 out of 5 sites had >90% overlap of selected cases when comparing the computable algorithm to their original eMERGE implementation. This case study demonstrates potential use of PhEMA computable representations to automate phenotyping across different EHR systems, but also highlights some ongoing challenges.


Subject(s)
Algorithms , Electronic Health Records , Phenotype , Prostatic Hyperplasia/diagnosis , Data Warehousing , Databases, Factual , Genomics , Humans , Male , Organizational Case Studies , Prostatic Hyperplasia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...