Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Environ Pollut ; 324: 121283, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36804884

ABSTRACT

Recently, Comte et al. (2022) re-examined the natural degradation of chlordecone (CLD) in the soils of the French West Indies (FWI) by introducing an additional 'dissipation parameter' into the WISORCH model developed by Cabidoche et al. (2009). Recent data sets of CLD concentrations in FWI soils obtained by Comte et al. enabled them optimizing the model parameters, resulting in significantly shorter estimates of pollution persistence than in the original model. Their conclusions jeopardize the paradigm of a very limited degradation of CLD in FWI soils, which may lead to an entire revision of the management of CLD contamination. However, we believe that their study is questionable on several important aspects. This includes potential biases in the data sets and in the modeling approach. It results in an inconsistency between the estimated dissipation half-life time (DT50) of five years that the authors determined for CLD and the fate of CLD in soil from the application period 1972-1993 until nowadays. Most importantly, a rapid dissipation of CLD in the field as proposed by Comte et al. is not sufficiently supported by data and estimates. Hence, the paradigm of long-term persistence of CLD in FWI soils is still to be considered.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Chlordecone/analysis , Chlordecone/metabolism , Insecticides/analysis , Soil , Half-Life , Soil Pollutants/analysis , West Indies
2.
Chemosphere ; 306: 135616, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35810859

ABSTRACT

Environmental emission of pharmaceutical pollutants notably causes the contamination of aquatic ecosystems and drinking water. Typically, reduction of these pollutants in the environment is mostly managed by ameliorated wastewater treatments. Here, we report a method for the eco-design of drugs through the introduction within the molecular structure of a sensitive chemical group responsive to water treatments. The new drugs are thus programmed to fragment more easily and quickly than the original drugs. In this "retro catabolic drug design" strategy, methotrexate was used as drug model and an ether analog displaying a similar pharmacological profile was selected. Using photo-irradiation experiments at 254 nm, a representative drinking water treatment process, the identified transformation products were predominantly obtained from the expected molecular scission. Moreover, a faster kinetics of degradation was measured for the ether analog as compared to methotrexate and its transformation products were far less cytotoxic.


Subject(s)
Drinking Water , Environmental Pollutants , Water Pollutants, Chemical , Ecosystem , Ethers , Methotrexate/toxicity , Pharmaceutical Preparations , Photolysis , Wastewater , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 823: 153582, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35114221

ABSTRACT

The use of pesticides in agriculture to protect crops against pests and diseases generates environmental contamination. The atmospheric compartment contributes to their dispersion at different distances from the application areas and to the exposure of organisms in untreated areas through dry and wet deposition. A multiresidue analytical method using the same TD-GC-MS analytical pipeline to quantify pesticide concentrations in both the atmosphere and rainwater was developed and tested in natura. A Box-Behnken experimental design was used to identify the best compromise in extraction conditions for all 27 of the targeted molecules in rainwater. Extraction yields were above 80% except for the pyrethroid family, for which the recovery yields were around 40-59%. TD-GC-MS proved to be a good analytical solution to detect and quantify pesticides in both target matrices with low limits of quantification. Twelve pesticides (six fungicides, five herbicides and one insecticide) were quantified in rainwater at concentrations ranging from 0.5 ng·L-1 to 170 ng·L-1 with a seasonal effect, and a correlation was found between the concentrations in rainwater and air. The calculated cumulative wet deposition rates are discussed regarding pesticide concentrations in the topsoil in untreated areas for some of the studied compounds.


Subject(s)
Herbicides , Pesticide Residues , Pesticides , Atmosphere , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry/methods , Herbicides/analysis , Pesticide Residues/analysis , Pesticides/analysis
4.
Environ Sci Pollut Res Int ; 29(4): 6060-6071, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34431057

ABSTRACT

Methotrexate is an antineoplastic folate analog of high environmental concern, due to its low biodegradability and toxicological properties. This study focused on its photodegradation under two irradiation conditions, aiming to be representative of environment (300-450 nm) and drinking water treatment (254 nm). The photodegradation experiments were conducted at two pH, to vary the methotrexate ionization state and to produce a large variety of transformation products (TPs). The degradation kinetics determined through LC-UV monitoring were contrasted according to pH and irradiation wavelength. However, the quantum yields were independent of ionization state at 254 nm and the changes in kinetics at higher wavelengths were attributed to a change in the degradation mechanism. The TPs formed during the reactions were identified by UHPLC-MS/MS, using both the positive and negative modes. Among the eleven proposed structures, five were described as methotrexate TPs for the first time. The TPs result from N-demethylation, glutamic acid oxidation, and C-N cleavage, all of them leading to further degraded photoproducts presenting modified or lost glutamic acid part. This was made possible thanks to the negative mode, which allowed the exploration of the glutamic acid moiety modifications. Cytotoxicity assessment on A549 cancer cells demonstrated that all photoproducts formed at pH 7 were less toxic than the parent compound.


Subject(s)
Tandem Mass Spectrometry , Water Pollutants, Chemical , Kinetics , Methotrexate , Photolysis , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 415: 125613, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34088172

ABSTRACT

Following treatment, amounts of pesticides can reach the atmosphere because of spray drift, volatilization from soil or plants, and/or wind erosion. Monitoring and risk assessment of air contamination by pesticides is a recent issue and more insights on pesticide transfer to atmosphere are needed. Thus, the objective of this work was to better understand and assess pesticides emission potential to air through volatilization. The TyPol tool was used to explore the relationships between the global, soil and plant volatilization potentials of 178 pesticides, and their molecular properties. The outputs of TyPol were then compared to atmospheric pesticide concentrations monitored in various French regions. TyPol was able to discriminate pesticides that were observed in air from those that were not. Clustering considering parameters driving the emission potential from soil (sorption characteristics) or plant (lipophilic properties), in addition to vapor pressure, allowed better discrimination of the pesticides than clustering considering all parameters for the global emission potential. Pesticides with high volatilization potential have high total energy, and low molecular weight, molecular connectivity indices and polarizability. TyPol helped better understand the volatilization potential of pesticides. It can be used as a first step to assess the risk of air contamination by pesticides.

6.
Environ Sci Pollut Res Int ; 28(13): 15934-15946, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33245539

ABSTRACT

The main goals of conservation agriculture are to enhance soil fertility and reduce soil degradation, especially through erosion. However, conservation agriculture practices can increase the risk of contamination by pesticides, mainly through vertical transfer via water flow. Better understanding of their sorption and degradation processes is thus needed in conservation agriculture as they control the amount of pesticide available for vertical transfer. The purpose of our study was to investigate the sorption and degradation processes of nicosulfuron in soil profiles (up to 90 cm deep) of a Vermic Umbrisol and a Stagnic Luvisol managed either in conventional or in conservation agriculture. Two laboratory sorption and incubation experiments were performed. Low sorption was observed regardless of the soil type, agricultural management or depth, with a maximum value of 1.3 ± 2.0 L kg-1. By the end of the experiment (91 days), nicosulfuron mineralisation in the Vermic Umbrisol was similar for the two types of agricultural management and rather depended on soil depth (29.0 ± 2.3% in the 0-60-cm layers against 7.5 ± 1.4% in the 60-90 cm). In the Stagnic Luvisol, nicosulfuron mineralisation reached similar value in every layer of the conservation agriculture plot (26.5% ± 0.7%). On the conventional tillage plot, mineralisation decreased in the deepest layer (25-60 cm) reaching only 18.4 ± 6.9% of the applied nicosulfuron. Regardless of the soil type or agricultural management, non-extractable residue formation was identified as the main dissipation process of nicosulfuron (45.1 ± 8.5% and 50.2 ± 7.0% under conventional and conservation agriculture respectively after 91 days). In our study, nicosulfuron behaved similarly in the Vermic Umbrisol regardless of the agricultural management, whereas the risk of transfer to groundwater seemed lower in the Stagnic Luvisol under conservation agriculture.


Subject(s)
Herbicides , Adsorption , Agriculture , Herbicides/analysis , Pyridines , Soil , Sulfonylurea Compounds
8.
Ann Biol Clin (Paris) ; 78(3): 279-298, 2020 06 01.
Article in French | MEDLINE | ID: mdl-32540815

ABSTRACT

BACKGROUND AND OBJECTIVES: The French national authority for health (Haute autorité de santé: HAS) and the French clinical toxicology society (Société de toxicologie clinique: STC) received a formal request from the French ministry for heath to elaborate recommendations for the screening of environmental overexposure to inorganic arsenic (iAs), for the medical management of overexposed patients and for the medical surveillance of exposed population. To allow these recommendations, preliminary literature retrieval and analysis were performed for identifying validated indicators of both exposure and early effects of iAs and their levels in the general population living in France. METHODS: Evaluations of inorganic arsenic toxicity conducted by national or international health agencies during the last 3 decades were all examined and analyzed. These evaluations were completed by literature retrieval through Medline and Scopus from January 2016 to December 2019. RESULTS AND CONCLUSIONS: The best biomonitoring indicator for iAs exposure is the sum of urine iAs, monmomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) concentrations (SAs). The upper limit of confidence interval of the 95th percentile of the distribution of this parameter in the general adult population living in France is 10 µg/g of creatinine, and is recommended as the limit value for the definition of overexposure. In less than 12 year-old children specific limit values are required, but not yet available. In their absence, SAs should exceed both 10 µg/g creatinine and 11 µg/L to be considered as indicating a probable overexposure to iAs. There are no useful biological indicators of iAs early effects. Non carcinogenic skin effects of inorganic arsenic (hyperpigmentation and keratosis) should be considered as the earliest deleterious effects of repeated environmental iAs exposure.


Subject(s)
Arsenic Poisoning/diagnosis , Arsenic/analysis , Biological Monitoring/methods , Environmental Exposure/analysis , Adult , Arsenic Poisoning/blood , Biological Monitoring/standards , Child , Child, Preschool , Feasibility Studies , France , Humans , Infant , Infant, Newborn
9.
J Sci Food Agric ; 100(6): 2502-2511, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31960978

ABSTRACT

BACKGROUND: The present study aimed to identify relationships between components of intramuscular connective tissue, proportions of the different fiber types, intramuscular fat and sensory tenderness of beef cooked at 55 °C. Accordingly, four muscles differing in their metabolic and contractile properties, as well as in their collagen content and butcher value, were obtained from dairy and beef cattle of several ages and sexes and were then used to create variability. RESULTS: Correlation analyses and/or stepwise regressions were applied on Z-scores to identify the existing and robust associations. Tenderness scores were further categorized into tender, medium and tough classes using unsupervised learning methods. The findings revealed a muscle-dependant role with respect to tenderness of total and insoluble collagen, cross-links, and type IIB + X and IIA muscle fibers. The longissimus thoracis and semitendinosus muscles that, in the present study, were found to be extreme in their tenderness potential were also very different from each other and from the rectus abdominis (RA) and semimembranosus (SM). RA and SM muscles were very similar regarding their relationship for muscle components and tenderness. A relationship between marbling and tenderness was only present when the results were analysed irrespective of all factors of variation of the experimental model relating to muscle and animal type. CONCLUSION: The statistical approaches applied in the present study using Z-scores allowed identification of the robust associations between muscle components and sensory beef tenderness and also identified discriminatory variables of beef tenderness classes. © 2020 Society of Chemical Industry.


Subject(s)
Connective Tissue , Muscle Fibers, Skeletal , Red Meat/analysis , Adipose Tissue , Animals , Cattle/classification , Collagen/analysis , Cooking , Female , Humans , Male , Muscle, Skeletal , Shear Strength
10.
Environ Sci Technol ; 54(1): 225-234, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31760744

ABSTRACT

Traditional constructed wetland designs typically result in variable efficiencies for trace organic contaminant removal. In this work, we used a Box-Behnken experimental design for optimizing the conditions of pH, nitrate concentration, and dissolved organic carbon (DOC) concentration that would maximize the rate of triclosan phototransformation while minimizing the accumulation of toxic byproducts. Triclosan is a frequently detected and toxic antimicrobial agent present in many consumer and industrial products. The results showed that high pH values (9.9) and low DOC concentration (11 mg/L-) would maximize triclosan phototransformation rate while minimizing the accumulation of toxic byproducts. As long as DOC concentrations were larger than 33 mg/L, nitrate concentration did not show a significant effect on triclosan phototransformation rate. The major transformation products detected were 2,4-dichlorophenol and compounds with chemical formulas C12H8Cl2O2 and C12H9ClO3, resulting from a chlorine loss or replacement by a OH group. In addition, 4-chlorocatechol was mainly detected during direct photolysis and 2,8-dichlorodibenzo-p-dioxin was only found during direct photolysis at pH 8. This study showed that wetland efficiency at removing triclosan can theoretically be increased by limiting DOC-contributing factors, e.g., emergent vegetation, and supporting pH-increase processes, e.g., via algae growth or by incorporating alkaline geomedia.


Subject(s)
Triclosan , Water Pollutants, Chemical , Carbon , Nitrates , Photolysis , Wetlands
11.
J Contam Hydrol ; 225: 103498, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31103926

ABSTRACT

Agroforestry practices have been acknowledged for reducing pesticide losses while maintaining land productivity. Pesticide removal from overland flow results from great infiltration capacities of the buffer soils. This can in turn threaten the quality of groundwater in case of poor pesticide sorption and degradation in the root-influenced zone. These mechanisms and their balance are likely to be influenced by plant species. However, little is known about the role of agroforestry species in the infiltration of herbicides. The aim of this study was thereby to evaluate how popular agroforestry species modulate the infiltration of water and of a widely used herbicide. We established large buffer microcosms by planting Brome grass, Black walnut, Pin oak and Poplar trees in repacked soil columns. After a growth season of 4 months, we performed ponded infiltration experiments with bromide and S-Metolachlor. We used then the HYDRUS 1D model to compare the hydrodynamic properties and S-Metolachlor transport patterns between the microcosms. In addition, we compared the sorption properties of the rhizosphere and bulk soils. We found that the tree species increased the sorption of S-Metolachlor in soil with Kd being 3 times greater than in the un-vegetated and Brome grass microcosms. Poplar trees increased the hydraulic conductivity (Ksat) compared to the control and was associated to a low retardation of S-metolachlor, which increases the risk of groundwater contamination. With slightly reduced Ksat and retardation factor in the root zone, 1.6 to 1.8 times greater than in the control treatment, Black walnut appears as an optimal species for mitigating S-Metolachlor. The Brome grass and oak microcosms had the lowest Ksat of all treatments and S-Metolachlor retardation factors were equal and slightly increased compared to the control, respectively. These results show that agroforestry buffer's efficiency can be optimized by selecting appropriate species.


Subject(s)
Herbicides , Soil Pollutants , Acetamides , Soil
12.
Sci Total Environ ; 651(Pt 1): 506-515, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30243170

ABSTRACT

The fate of antibiotics and their metabolites in soils after application of organic waste depends on their environmental availability, which depends on the quality and biodegradability of the added exogenous organic matter (EOM). This study aimed at better understanding the fate of sulfamethoxazole (SMX) and N-acetyl-sulfamethoxazole (AcSMX) metabolite added to soils via sludge compost or cow manure application, during a 28-day incubation. Experimental results obtained for mineralized, extractable, and non-extractable fractions as well as EOM mineralization were used to couple SMX and AcSMX dynamics to the EOM evolution using the COP-Soil model. According to various mechanisms of extraction, CaCl2, EDTA and cyclodextrin solutions extracted contrasted available fractions (31-96% on day 0), resulting in different sets of parameter values in the model. CaCl2 extraction was the best method to assess the sulfonamide availability, leading to low relative root mean squared errors and best simulations of SMX and AcSMX dynamics. The decrease of SMX and AcSMX availability over time went with the formation of non-extractable residues, mostly of physicochemical origin. Using the COP-Soil model, the co-metabolism was assumed to be responsible for the formation of biogenic non-extractable residues and the low mineralization of SMX and AcSMX.


Subject(s)
Anti-Infective Agents/metabolism , Manure/analysis , Soil Microbiology , Soil Pollutants/metabolism , Sulfamethoxazole/metabolism , Acetylation , Animals , Biodegradation, Environmental , Cattle , Composting
13.
Sci Total Environ ; 628-629: 1508-1517, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30045569

ABSTRACT

Conservation tillage practices mainly based on cover crops and no-tillage with accumulation of crop residues at the soil surface (mulch) modify the environmental fate of pesticides. However, only few pesticide fate models are able to consider mulch of crop residues as well as the effect of intermediate cover crops. Thus, the objective was to develop an approach to model the effects of crop residues left at the soil surface and cover crops on the fate of pesticides. This approach consisted in (1) considering the crop residues as a soil layer with specific physical, hydrodynamic and pesticide-reactivity properties close to that of a high organic content soil layer, and (2) introducing a correction factor of the potential evapotranspiration, estimated through a calibration step, to take into account the reduction of soil evaporation by the presence of a mulch. This approach was developed using MACRO as support pesticide model. To assess the model performances, we used the data from a field experiment designed in an irrigated maize monoculture under conservation tillage. Soil water content, water percolates, soil temperature and S-metolachlor herbicide concentrations in the leachate at 1m depth were measured during two years. The approach chosen to simulate the mulch effects allowed MACRO to make acceptable predictions of the observed water percolation, soil temperature and to a less extent herbicide leaching. However, it showed a poor performance to simulate the soil water content. Results are discussed in terms of further modelling options to better assess the environmental risks of pesticides under conservation tillage. This approach remains to be tested against various soils, crops, pesticides and types of mulch.


Subject(s)
Acetamides/analysis , Agriculture/methods , Models, Chemical , Pesticides/analysis , Soil Pollutants/analysis , Crops, Agricultural , Environmental Monitoring , Soil/chemistry
14.
J Contam Hydrol ; 214: 54-64, 2018 07.
Article in English | MEDLINE | ID: mdl-29871763

ABSTRACT

Crop residues left on the soil surface as mulch greatly influence the fate of pesticides in conservation agricultural practices because most of the applied pesticide is intercepted by mulch before passing to the soil. Modelling of pesticide losses from wash-off and leaching will greatly improve our understanding of the environmental consequences of pesticides in these systems. The PASTIS model, which simulates water transfer, mulch decomposition, and pesticide dynamics, was adapted in this new version to model the interactions between pesticides and mulch in order to simulate the impact of mulch on pesticide dynamic. Parameters of mulch dynamics and pesticide degradation and retention processes were estimated using independent incubation experiments. The PASTIS model was tested with experimental laboratory data that were obtained from two pesticides (Glyphosate and s-metolachlor) applied to soil columns where mulch composed of maize and dolichos was placed at the soil surface impacted by two rain intensities (a high and infrequent intensity and a light and frequent intensity). Simulations indicated good agreement between simulated and experimental values. After 1 day, 45-46% of the pesticides leached from the mulch and 54-55% remained in the mulch for both pesticides and both rain intensities. During the experiment, pesticide wash-off was greater for the high and infrequent rain (56-57%) compare to light and frequent rain (39-45%) for both pesticides. A smaller amount of S-metolachlor washed off with the light and frequent rain intensity (39%) than glyphosate (45%) because of its lower desorption rate from mulch residues. Glyphosate was more degraded (37-45%) than s-metolachlor (17-37%), which agrees with preliminary incubation experiments that were used for parameter estimation. A sensitivity analysis indicated that the saturation index of mulch at which pesticides started their diffusion in the rainwater and the time of the first rainfall were the two parameters that influenced the most output variables of our model. This study suggests that the PASTIS model developed for pesticide dissipation in mulch is a useful tool to evaluate the potential risk of pesticide leaching to the groundwater in conservation agriculture systems.


Subject(s)
Models, Theoretical , Soil , Acetamides , Agriculture , Glycine/analogs & derivatives , Pesticides/analysis , Rain , Soil/chemistry , Soil Pollutants/chemistry , Glyphosate
15.
Environ Sci Pollut Res Int ; 25(16): 16236-16245, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29594886

ABSTRACT

Antibiotics are frequently introduced into agricultural soils with the application of sewage sludge or farm organic fertilizers. Repeated exposure of soils to a pollutant can enrich for microbial populations that metabolize the chemical, reducing its environmental persistence. In London, Canada, soils from a long-term field experiment have received different concentrations of antibiotics annually for several years. The purpose of the present study was to assess the bioavailability of sulfamethazine, erythromycin, or ciprofloxacin through aqueous extractions with borax or EDTA solutions and their biodegradation following different soil exposure scenarios. Control soils and soils treated annually in the field with 10 mg antibiotics per kg were sampled, supplemented in the laboratory with radiolabeled antibiotic either added directly or carried in dairy manure. Sulfamethazine and erythromycin were initially more bioavailable than ciprofloxacin, with aqueous extractabilities representing 60, 36, and 8%, respectively. Sulfamethazine and erythromycin were degraded in soils, with a larger fraction mineralized in the long-term exposed soil (20 and 65%, respectively) than in control soil (0.4 and 3%, respectively) after 7 days of incubation. In contrast, ciprofloxacin was not mineralized neither in control nor long-term exposed soils. The mineralized fractions were similar for antibiotics added directly to soil or carried in dairy manure.


Subject(s)
Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Erythromycin/chemistry , Fertilizers/analysis , Sulfamethazine/chemistry , Agriculture , Biodegradation, Environmental , Canada , London , Manure , Sewage , Soil
16.
Environ Sci Pollut Res Int ; 25(5): 4728-4738, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29197062

ABSTRACT

Understanding the fate and ecotoxicological effects of pesticides largely depends on their molecular properties. We recently developed "TyPol" (Typology of Pollutants), a classification method of organic compounds based on statistical analyses. It combines several environmental (sorption coefficient, degradation half-life) and one ecotoxicological (bioconcentration factor) parameters, to structural molecular descriptors (number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals, etc.). The present study attempts to extend TyPol to the ecotoxicological effects of pesticides on non-target organisms, based on data analysis from available literature and databases. It revealed that relevant ecotoxicological endpoints for terrestrial organisms (e.g., soil microorganisms, invertebrates) that support a range of ecosystemic services are lacking as compared to aquatic organisms. The availability of ecotoxicological parameters was also lower for chronic than for acute ecotoxicity endpoints. Consequently, seven parameters were included for acute (EC50, LC50) and chronic (NOEC) ecotoxicological effects for one terrestrial (Eisenia sp.) and three aquatic (Daphnia sp., algae, Lemna sp.) organisms. In this new configuration, we used TyPol to classify 50 pesticides into different clusters that gather molecules with similar environmental behaviors and ecotoxicological effects. The classification results evidenced relationships between molecular descriptors, environmental parameters, and the added ecotoxicological endpoints. This proof-of-concept study also showed that TyPol in silico classification can successfully address new scientific questions and be expanded with other parameters of interest.


Subject(s)
Ecotoxicology/methods , Environmental Monitoring/methods , Environmental Pollutants/classification , Pesticides/classification , Animals , Chlorophyta/drug effects , Cluster Analysis , Daphnia/drug effects , Ecosystem , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , Lethal Dose 50 , Oligochaeta/drug effects , Pesticides/chemistry , Pesticides/toxicity , Toxicity Tests
17.
Sci Total Environ ; 607-608: 271-280, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28692897

ABSTRACT

Recycling organic waste products in agriculture is a potential route for the dispersion of pharmaceutical residues in the environment. In this study, the concentrations of thirteen pharmaceuticals and the personal care product triclosan (PPCPs) were determined in different environmental matrices from long-term experimental fields amended with different organic waste products (OWPs), including sludge, composted sludge with green wastes, livestock effluents and composted urban wastes applied at usual agricultural rates. PPCP concentrations were different in OWPs, varying from a few micrograms to milligrams per kilogram dry matter or per litre for slurry. OWPs from sludge or livestock effluents primarily contained antibiotics, whereas composted urban wastes primarily contained anti-inflammatory compounds. PPCP contents in soils amended for several years were less than a few micrograms per kilogram. The most persistent compounds (fluoroquinolones, carbamazepine) were quantified or detected in soils amended with sludge or composted sludge. In soils amended with composted municipal solid waste, carbamazepine was quantified, and fluoroquinolones, ibuprofen and diclofenac were sometimes detected. The small increases in fluoroquinolones and carbamazepine in soils after individual OWP applications were consistent with the fluxes from the applied OWP. The measured concentrations of pharmaceuticals in soil after several successive OWP applications were lower than the predicted concentrations because of degradation, strong sorption to soil constituents and/or leaching. Dissipation half-lives (DT50) were approximately 750-2500, 900 and <300days for fluoroquinolones, carbamazepine and ibuprofen, respectively, in temperate soils and <350 and <80days for fluoroquinolones and doxycycline, respectively, in tropical soils. Detection frequencies in soil leachates were very low (below 7%), and concentrations ranged from the limits of detection (0.002-0.03µg/L) and exceptionally to 0.27µg/L. The most frequently detected pharmaceuticals were carbamazepine and ibuprofen. Based on the risk quotient, the estimated ecotoxicological risks for different soil organisms were low.


Subject(s)
Cosmetics/analysis , Environmental Monitoring , Pharmaceutical Preparations/analysis , Soil Pollutants/analysis , Waste Products/analysis , Agriculture , Ecotoxicology , Manure , Sewage , Soil
18.
Sci Total Environ ; 607-608: 1037-1048, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28724222

ABSTRACT

The recycling of biosolids and livestock manure in agriculture may lead to the introduction of antibiotic residues, i.e., parent molecule and transformation products, into amended soils. Their fate in soils can be approached through the assessment of their environmental availability. In this work, the environmental availability of sulfamethoxazole (SMX) and three transformation products (N4-acetyl-SMX, 3-amino-5-methylisoxazole, aniline) was assessed in soils amended with sludge compost or cow manure throughout a three-month incubation, using soft extractions with CaCl2, EDTA or cyclodextrin solutions. First, the freeze-storage of soil samples was shown to decrease the SMX extractability. The SMX extractability depended on the initial concentration, the amendment type and the extracting solution at day 0. From 1.9% up to 63% of the SMX total content was initially extractable. The lowest fractions were quantified in EDTA extracts in which the dissolved organic matter was the most complex and responsible for high matrix effects in mass spectrometry compared to CaCl2 extracts. The purification of cyclodextrin extracts highly reduced the matrix effects, but CaCl2 was considered as the most suitable extractant. SMX extractability strongly decreased after the first 8days of incubation to finally reach 0.4-0.8% after 84days, whatever the initial conditions. This high decrease could be related to humification observed through the increasing complexity of extracted dissolved organic matter. Very low levels of transformation products were quantified throughout the incubation period. The low environmental availability of SMX was mainly due to its sorption on soil organic matter and resulted in its low biotransformation in these amended soils.


Subject(s)
Chemistry Techniques, Analytical/methods , Soil Pollutants/isolation & purification , Soil/chemistry , Sulfamethoxazole/isolation & purification , Agriculture , Animals , Cattle , Manure , Sewage
20.
Sci Total Environ ; 574: 781-795, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27664765

ABSTRACT

Chlordecone (C10Cl10O; CAS number 143-50-0) has been used extensively as an organochlorine insecticide but is nowadays banned and listed on annex A in The Stockholm Convention on Persistent Organic Pollutants (POPs). Although experimental evidences of biodegradation of this compound are scarce, several dechlorination products have been proposed by Dolfing et al. (2012) using Gibbs free energy calculations to explore different potential transformation routes. We here present the results of an in silico classification (TyPol - Typology of Pollutants) of chlordecone transformation products (TPs) based on statistical analyses combining several environmental endpoints and structural molecular descriptors. Starting from the list of putative chlordecone TPs and considering available data on degradation routes of other organochlorine compounds, we used different clustering strategies to explore the potential environmental behaviour of putative chlordecone TPs from the knowledge on their molecular descriptors. The method offers the possibility to focus on TPs present in different classes and to infer their environmental fate. Thus, we have deduced some hypothetical trends for the environmental behaviour of TPs of chlordecone assuming that TPs, which were clustered away from chlordecone, would have different environmental fate and ecotoxicological impact compared to chlordecone. Our findings suggest that mono- and di-hydrochlordecone, which are TPs of chlordecone often found in contaminated soils, may have similar environmental behaviour in terms of persistence.

SELECTION OF CITATIONS
SEARCH DETAIL
...