Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31794394

ABSTRACT

A linear piezoelectric micromachined ultrasound transducer (PMUT) array was fabricated and integrated into a device for photoacoustic imaging (PAI) of tissue phantoms. The PMUT contained 65 array elements, with each element having 60 diaphragms of [Formula: see text] diameter and [Formula: see text] pitch. A lead zirconate titanate (PZT) thin film was used as the piezoelectric layer. The in-air vibration response of the PMUT array elements showed a first mode resonance between 6 and 8 MHz. Hydrophone measurements showed 16.2 kPa average peak ultrasound pressure output at 7.5 mm from one element excited with 5 Vpp input. A receive sensitivity of ~0.48 mV/kPa was observed for a PMUT array element with 0 dB gain. The PMUT array was bonded to a custom-printed circuit board to enable compact integration with an optical fiber bundle for PAI. A broad photoacoustic bandwidth of ~89% was observed for the photoacoustic response captured from absorbing pencil lead targets. Linear scanning of a single element of a PMUT array was performed on different tissue phantoms embedded with light-absorbing targets to successfully demonstrate B-mode PAI using PMUTs.


Subject(s)
Microtechnology/instrumentation , Photoacoustic Techniques/instrumentation , Ultrasonography/instrumentation , Equipment Design , Micro-Electrical-Mechanical Systems/instrumentation , Phantoms, Imaging , Transducers
2.
IEEE Trans Ultrason Ferroelectr Freq Control ; 66(10): 1606-1615, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31283502

ABSTRACT

Lead zirconate titanate (PZT)-based piezoelectric micromachined ultrasonic transducers (PMUTs) for particle manipulation applications were designed, fabricated, characterized, and tested. The PMUTs had a diaphragm diameter of 60 [Formula: see text], a resonant frequency of ~8 MHz, and an operational bandwidth (BW) of 62.5%. Acoustic pressure output in water was 9.5 kPa at 7.5 mm distance from a PMUT element excited with a unipolar waveform at 5 Vpp . The element consisted of 20 diaphragms connected electrically in parallel. Particle trapping of 4 [Formula: see text] silica beads was shown to be possible with 5 Vpp unipolar excitation. Trapping of multiple beads by a single element and deterministic control of particles via acoustophoresis without the assistance of microfluidic flow were demonstrated. It was found that the particles move toward diaphragm areas of highest pressure, in agreement with literature and simulations. Unique bead patterns were generated at different driving frequencies and were formed at frequencies up to 60 MHz, much higher than the operational BW. Levitation planes were generated above the 30 MHz driving frequency.

3.
Article in English | MEDLINE | ID: mdl-29994063

ABSTRACT

Direct-write laser greyscale lithography has been used to facilitate a single step patterning technique for multi-layer lead zirconate titanate (PZT) thin films. A 2.55 µm thick photoresist was patterned with a direct-write laser. The intensity of the laser was varied to create both tiered and sloped structures that are subsequently transferred into multi-layer PZT(52/48) stacks using a single Ar ion mill etch. Traditional processing requires a separate photolithography step and an ion mill etch for each layer of the substrate, which can be costly and time consuming. The novel process allows access to buried electrode layers in the multi-layer stack in a single photolithography step. The greyscale process was demonstrated on three 150 mm diameter Si substrates configured with a 0.5 µm thick SiO2 elastic layer, a base electrode of Pt/TiO2, and a stack of four PZT(52/48) thin films of either 0.25 µm thickness per layer or 0.50 µm thickness per layer, and using either Pt or IrO2 electrodes above and below each layer. Stacked capacitor structures were patterned and results will be reported on the ferroelectric and electromechanical properties using various wiring configurations and compared to comparable single layer PZT configurations.

4.
Article in English | MEDLINE | ID: mdl-29733291

ABSTRACT

Direct-write laser grayscale lithography has been used to facilitate a single-step patterning technique for multilayer lead zirconate titanate (PZT) thin films. A 2.55- -thick photoresist was patterned with a direct-write laser. The intensity of the laser was varied to create both tiered and sloped structures that are subsequently transferred into multilayer PZT(52/48) stacks using a single Ar ion-mill etch. Traditional processing requires a separate photolithography step and an ion mill etch for each layer of the substrate, which can be costly and time consuming. The novel process allows access to buried electrode layers in the multilayer stack in a single photolithography step. The grayscale process was demonstrated on three 150-mm diameter Si substrates configured with a 0.5- -thick SiO2 elastic layer, a base electrode of Pt/TiO2, and a stack of four PZT(52/48) thin films of either 0.25- thickness per layer or 0.50- thickness per layer, and using either Pt or IrO2 electrodes above and below each layer. Stacked capacitor structures were patterned and results will be reported on the ferroelectric and electromechanical properties using various wiring configurations and compared to comparable single layer PZT configurations.

5.
Article in English | MEDLINE | ID: mdl-28708541

ABSTRACT

This paper reports on the ionizing radiation effects in lead-zirconate-titanate (PZT) with varied top electrode material and bias condition during radiation. A technique to characterize the piezoelectric performance of films unclamped from the substrate is described, and used to demonstrate the effects of radiation on the material's electromechanical behavior. Both platinum and iridium oxide top electrodes were examined, and iridium oxide appears to significantly mitigate radiation-induced damage that is observed in platinum top electrode samples. This mitigation of radiation damage is attributed to the reduced number of oxygen vacancies within the PZT films when an iridium oxide top electrode is used. Devices with applied bias during radiation were compared with devices under applied bias only. Applied bias appears to slightly enhance the electromechanical response in the negative bias polarity for irradiated platinum electrode samples suggesting that the bias can cause defects to orient and therefore improve electromechanical response. Ultimately, iridium oxide top electrodes appear to mitigate radiation damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...