Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 920852, 2022.
Article in English | MEDLINE | ID: mdl-35874013

ABSTRACT

Global warming is predicted to extend the growing season of trees and plants, and advance spring phenology. However, intensification of extreme climate events in mid-latitude forests, from weakening of the jet stream and atmospheric blockings, may expose trees to increased risk associated with more frequent late-spring frosts. Still, little is known regarding the intraspecific variation in frost tolerance and how it may be shaped by local adaptation to the climate of seed origin. As part of an assisted migration trial located in different bioclimatic zones in the province of Quebec, Canada, and following an extensive late-spring frost that occurred at the end of May 2021, we evaluated the frost damages on various white spruce (Picea glauca) seed sources tested on three sites (south, central, and north). The severity of frost damages was assessed on 5,376 trees after the cold spell and an early spring warming which advanced bud flush by approximately 10 days on average. The frost damage rate was similar among sites and seed sources and averaged 99.8%. Frost damage severity was unrelated to the latitude of seed origin but was variable among sites. The proportion of severely damaged trees was higher in the northern site, followed by central and southern sites. The proportion of severely damaged trees was linearly and inversely related to tree height before the frost event. Apical growth cancelation was not significantly different among seed sources including local ones, and averaged 74, 46, and 22%, respectively, in central, northern, and southern plantation sites. This study provides recommendations to limit the loss of plantation productivity associated with such a succession of spring climate anomalies. Implications for seed transfer models in the context of climate change and productivity of spruce plantations are discussed in the light of lack of local adaptation to such pronounced climate instability and ensuing large-scale maladaptation.

2.
J Exp Bot ; 72(12): 4384-4400, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33739415

ABSTRACT

Mesophyll conductance (gm) determines the diffusion of CO2 from the substomatal cavities to the site of carboxylation in the chloroplasts and represents a critical component of the diffusive limitation of photosynthesis. In this study, we evaluated the average effect sizes of different environmental constraints on gm in Populus spp., a forest tree model. We collected raw data of 815 A-Ci response curves from 26 datasets to estimate gm, using a single curve-fitting method to alleviate method-related bias. We performed a meta-analysis to assess the effects of different abiotic stresses on gm. We found a significant increase in gm from the bottom to the top of the canopy that was concomitant with the increase of maximum rate of carboxylation and light-saturated photosynthetic rate (Amax). gm was positively associated with increases in soil moisture and nutrient availability, but was insensitive to increasing soil copper concentration and did not vary with atmospheric CO2 concentration. Our results showed that gm was strongly related to Amax and to a lesser extent to stomatal conductance (gs). Moreover, a negative exponential relationship was obtained between gm and specific leaf area, which may be used to scale-up gm within the canopy.


Subject(s)
Populus , Carbon Dioxide , Mesophyll Cells , Photosynthesis , Plant Leaves , Plant Stomata , Stress, Physiological
3.
PLoS One ; 14(2): e0206021, 2019.
Article in English | MEDLINE | ID: mdl-30742644

ABSTRACT

The mechanistic bases of thermal acclimation of net photosynthetic rate (An) are still difficult to discern, and the data sets available are scarce, particularly for hybrid poplar. In the present study, we examined the contribution of a number of biochemical and biophysical traits on thermal acclimation of An for two hybrid poplar clones. We grew cuttings of Populus maximowiczii × Populus nigra (M×N) and Populus maximowiczii × Populus balsamifera (M×B) clones under two day/night temperature of 23°C/18°C and 33°C /27°C and under low and high soil nitrogen level. After ten weeks, we measured leaf RuBisCO (RAR) and RuBisCO activase (RARCA) amounts and the temperature response of An, dark respiration (Rd), stomatal conductance, (gs), apparent maximum carboxylation rate of CO2 (Vcmax) and apparent photosynthetic electron transport rate (J). Results showed that a 10°C increase in growth temperature resulted in a shift in thermal optimum (Topt) of An of 6.2±1.6°C and 8.0±1.2°C for clone M×B and M×N respectively, and an increased An and gs at the growth temperature for clone M×B but not M×N. RuBisCO amount was increased by N level but was insensitive to growth temperature while RARCA amount and the ratio of its short to long isoform was stimulated by the warm condition for clone M×N and at low N for clone M×B. The activation energy of apparent Vcmax and apparent J decreased under the warm condition for clone M×B and remained unchanged for clone M×N. Our study demonstrated the involvement of both RARCA, the activation energy of apparent Vcmax and stomatal conductance in thermal acclimation of An.


Subject(s)
Photosynthesis/physiology , Populus/physiology , Ribulose-Bisphosphate Carboxylase/metabolism , Thermotolerance/physiology , Nitrogen/metabolism , Phenotype , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Stomata/physiology , Soil/chemistry , Temperature
4.
Ann Bot ; 121(3): 443-457, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29300870

ABSTRACT

Background and Aims: Knowledge of thermal acclimation of physiological processes of boreal tree species is necessary to determine their ability to adapt to predicted global warming and reduce the uncertainty around the anticipated feedbacks of forest ecosystems and global carbon cycle to climate change. The objective of this work was to examine the extent of thermal acclimation of net photosynthesis (An) and dark respiration (Rd) of two distant white spruce (Picea glauca) seed sources (from south and north of the commerial forest zone in Québec) in response to latitudinal and seasonal variations in growing conditions. Methods: The temperature responses of An, its biochemical and biophysical limitations, and Rd were measured in 1-year-old needles of seedlings from the seed sources growing in eight forest plantations along a regional thermal gradient of 5.5 °C in Québec, Canada. Key Results: The average optimum temperature (Topt) for An was 19 ± 1.2 °C and was similar among seed sources and plantation sites along the thermal gradient. Net photosynthesis at Topt (Aopt) varied significantly among plantation sites and was quadratically related to the mean July temperature (MJT) of plantation sites. Topt for mesophyll conductance, maximum electron transport rate and maximum rate of carboxylation were 28, 22 and 30 °C, respectively. Basal respiration rate (Rd at 10 °C) was linearly and negatively associated with MJT. Q10 of Rd (the rate of change in Rd with a 10 °C increase in temperature) did not show any significant relationship with MJT and averaged 1.5 ± 0.1. The two seed sources were similar in their thermal responses to latitudinal and seasonal variations in growing conditions. Conclusions: The results showed moderate thermal acclimation of respiration and no evidence for thermal acclimation of photosynthesis or local genetic adaptation for traits related to thermal acclimation. Therefore, growth of local white spruces may decline in future climates.


Subject(s)
Acclimatization/physiology , Cell Respiration/physiology , Global Warming , Photosynthesis/physiology , Picea/physiology , Adaptation, Physiological/physiology , Climate , Temperature
5.
Front Plant Sci ; 8: 2214, 2017.
Article in English | MEDLINE | ID: mdl-29358942

ABSTRACT

With climate change, favorable growing conditions for tree species are shifting northwards and to higher altitudes. Therefore, local populations are becoming less adapted to their environment. Assisted migration is one of the proposed adaptive measures to reduce the vulnerability of natural populations and maintain forest productivity. It consists of moving genetic material to a territory where future climate conditions correspond to those of its current location. Eight white spruce (Picea glauca [Moench] Voss) seed sources representing as many seed orchards were planted in 2013 at three forest sites simulating a south-north climatic gradient of 1.7°C in Québec, Canada. The objectives were to (1) evaluate the morpho-physiological responses of the different seed sources and (2) determine the role of genetic adaptation and physiological plasticity on the observed variation in morpho-physiological traits. Various seedling characteristics were measured, notably height growth from nursery to the fourth year on plantation. Other traits such as biomass and carbon allocation, nutritional status, and various photosynthetic traits before bud break, were evaluated during the fourth growing season. No interaction between sites and seed sources was observed for any traits, suggesting similar plasticity between seed sources. There was no change in the rank of seed sources and sites between years for height growth. Moreover, a significant positive correlation was observed between the height from the nursery and that after 4 years in the plantation. Southern seed sources showed the best height growth, while optimum growth was observed at the central site. Juvenile height growth seems to be a good indicator of the juvenile carbon sequestration and could serve as a selection criterion for the best genetics sources for carbon sequestration. Vector analysis showed no nitrogen deficiency 4 years after planting. Neither seed sources nor planting sites had a significant effect on photosynthesis before bud break. The observed results during the establishment phase under different site conditions indicate that southern seed sources may already benefit from assisted migration to cooler climatic conditions further north. While northern seed sources are likely to benefit from anticipated local global warming, they would not match the growth performance of seedlings from southern sources.

6.
Front Plant Sci ; 7: 1450, 2016.
Article in English | MEDLINE | ID: mdl-27746795

ABSTRACT

Because of changes in climatic conditions, tree seeds originating from breeding programs may no longer be suited to sites where they are currently sent. As a consequence, new seed zones may have to be delineated. Assisted migration consists of transferring seed sources that match the future climatic conditions to which they are currently adapted. It represents a strategy that could be used to mitigate the potential negative consequences of climate change on forest productivity. Decisions with regard to the choice of the most appropriate seed sources have to rely on appropriate knowledge of morpho-physiological responses of trees. To meet this goal, white spruce (Picea glauca [Moench] Voss) seedlings from eight seed orchards were evaluated during two years in a forest nursery, and at the end of the first growing season on three plantation sites located in different bioclimatic domains in Quebec. The morpho-physiological responses obtained at the end of the second growing season (2+0) in the nursery made it possible to cluster the orchards into three distinct groups. Modeling growth curves of these different groups showed that the height growth of seedlings from the second-generation and southern first-generation seed orchards was significantly higher than that of those from other orchards, by at least 6%. A multiple regression model with three climatic variables (average growing season temperature, average July temperature, length of the growing season) showed that the final height of seedlings (2+0) from the first-generation seed orchards was significantly related to the local climatic conditions at the orchard sites of origin where parental trees from surrounding natural populations were sampled to provide grafts for orchard establishment. Seedling height growth was significantly affected by both seed source origins and planting sites, but the relative ranking of the different seed sources was maintained regardless of reforestation site. This knowledge could be used, in conjunction with transfer models, to refine operational seed transfer rules and select the most suitable sites in an assisted migration strategy.

7.
Front Plant Sci ; 7: 48, 2016.
Article in English | MEDLINE | ID: mdl-26870067

ABSTRACT

Assisted population migration (APM) is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i) the degree of genetic adaptation of seed sources to their environment of origin and (ii) the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions. We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss) along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature (MAT) gradient of 2.2°C. During the second growing season, we measured height growth (H2014) and traits related to resources use efficiency and photosynthetic rate (A max). All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, A max, stomatal conductance (g s ), the ratio of mesophyll to stomatal conductance, water use efficiency, and photosynthetic nitrogen-use efficiency showed significant variation in both physiological plasticity due to the planting site and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources showed a similar level of physiological plasticity. H2014, A max and g s , but not carboxylation capacity (V cmax), were correlated and decreased with a reduction of the average temperature of the growing season at seed origin. The clinal variation in H2014 and A max appeared to be driven by CO2 conductance. The presence of locally adapted functional traits suggests that the use of APM may have advantages for optimizing seed source productivity in future local climates.

8.
Tree Physiol ; 35(8): 864-78, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26116923

ABSTRACT

Climate-related variations in functional traits of boreal tree species can result both from physiological acclimation and genetic adaptation of local populations to their biophysical environment. To improve our understanding and prediction of the physiological and growth responses of populations to climate change, we studied the role of climate of seed origin in determining variations in functional traits and its implications for tree improvement programs for a commonly reforested boreal conifer, white spruce (Picea glauca (Moench) Voss). We evaluated growth, root-to-shoot ratio (R/S), specific leaf area (SLA), needle nitrogen (N(mass)), total non-structural carbohydrates (NSC) and photosynthetic traits of 3-year-old seedlings in a greenhouse experiment using seed from six seed orchards (SO) representing the different regions where white spruce is reforested in Québec. Height and total dry mass (TDM) were positively correlated with photosynthetic capacity (A(max)), stomatal conductance (g(s)) and mesophyll conductance (g(m)). Total dry mass, but not height growth, was strongly correlated with latitude of seed origin (SO) and associated climate variables. A(max), g(s), g(m) and more marginally, photosynthetic nitrogen-use efficiency (PNUE) were positively associated with the mean July temperature of the SO, while water use efficiency (WUE) was negatively associated. Maximum rates of carboxylation (V(cmax)), maximum rates of electron transport (J(max)), SLA, N(mass), NSC and R/S showed no pattern. Our results did not demonstrate a higher Amax for northern seed orchards, although this has been previously hypothesized as an adaptation mechanism for maintaining carbon uptake in northern regions. We suggest that gs, gm, WUE and PNUE are the functional traits most associated with fine-scale geographic clines and with the degree of local adaptation of white spruce populations to their biophysical environments. These geographic patterns may reflect in situ adaptive genetic differences in photosynthetic efficiency along the cline.


Subject(s)
Acclimatization , Picea/physiology , Seedlings/physiology , Carbon/metabolism , Climate , Climate Change , Electron Transport , Geography , Mesophyll Cells/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Plant Roots/physiology , Plant Shoots/physiology , Plant Transpiration/physiology , Quebec , Temperature , Trees , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...