Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 76(Pt 3): 682-688, 2015 Oct.
Article in English | MEDLINE | ID: mdl-28455053

ABSTRACT

In this work, we used Proton Transfer Reaction-Mass Spectrometry (PTR-ToF-MS), coupled with an automated sampling system, to monitor lactic fermentation driven by different yogurt commercial starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. The aim is the identification of markers for real-time and non-invasive bioprocess control and optimisation as an industrial driver of innovation in food technology and biotechnology. We detected more than 300 mass peaks, tentatively identifying all major yogurt aroma volatiles. Thirteen mass peaks showed statistically significant differences among the four commercial starters. Among these are acetaldehyde, methanethiol, butanoic acid, 2-butanone, diacetyl, acetoin, 2-hydroxy-3-pentanone/pentanoic acid, heptanoic acid and benzaldehyde which play a key role in yogurt flavour. These volatile described the diverse flavour properties claimed by food biotechnological companies and, considering the possible contribution to yogurt flavour, are potential markers for the rapid screening of starter cultures and for the quality design in this fermentation-driven production. The strength of our approach lies in the identification, for the first time, of specific depletion kinetics of four sulphur containing compounds occurring during fermentation (hydrogen sulphide, methanethiol, S-methyl thioacetate/S-ethyl thioformate, pentane-thiol), which suggest a new possible protechnological feature of yogurt starter cultures.

2.
J Mass Spectrom ; 49(9): 850-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25230182

ABSTRACT

The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...