Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Obes Sci Pract ; 2(4): 426-435, 2016 12.
Article in English | MEDLINE | ID: mdl-28090348

ABSTRACT

AIM: Insulin sensitivity is ~40% lower in women with polycystic ovary syndrome (PCOS) than in controls. We tested the hypothesis that 5 weeks of electroacupuncture treatment improves glucose regulation and androgen levels in overweight/obese women with PCOS. MATERIAL AND METHODS: Seventeen women with PCOS, aged 18 to 38 years, with a body mass index (BMI) ≥25 kg/m2 and diagnosed with PCOS were included in this experimental and feasibility study and subjected to five weeks of electroacupuncture treatments three times/week. The primary outcome was changes in whole-body glucose homeostasis measured by euglycemic hyperinsulinemic clamp before and after the intervention. Secondary outcome were changes in HbA1c, circulating catecholamines, adipocyte size and adipose tissue expression of sex steroids and nerve growth factor (NGF). RESULTS: No significant change in glucose homeostasis was observed, but HbA1c decreased by 9.5% (p = 0.004), circulating testosterone decreased by 22% (p = 0.0007) and dihydrotestosterone decreased by 12% (p = 0.007). The two vagal activity markers of plasma serotonin levels and the dopamine metabolite homovanillic acid decreased by 21% (p = 0.027) and 20% (p = 0.011), respectively. Adipose tissue concentrations of testosterone decreased by 18% (p = 0.049), and androstenedione decreased by 13% (p = 0.035), and mature NGF/proNGF ratio, a marker of sympathetic activity, increased (p = 0.04). These changes occurred without changes in anthropometrics. CONCLUSION: Five weeks of electroacupuncture treatment improves HbA1c and circulating and adipose tissue androgens in women with PCOS. This effect is mediated, at least in part, via modulation of vagal activity and adipose tissue sympathetic activity. Based on these findings, we have recently initiated a randomized controlled study (NTC02647827).

2.
Hum Reprod ; 30(3): 692-700, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25609240

ABSTRACT

STUDY QUESTION: Does polycystic ovary syndrome (PCOS) in women without pregnancy complications affect placental signal transducer and activator of transcription 3 (STAT3) and mechanistic target of rapamycin (mTOR) signaling? SUMMARY ANSWER: Placental STAT3 signaling is activated but mTOR signaling is unaffected in PCOS. WHAT IS KNOWN ALREADY: Women with PCOS have increased risk of poor pregnancy outcomes (e.g. restricted or accelerated fetal growth), indicating placental dysfunction. Placental STAT3 and mTOR pathways regulate placental function and indirectly affect fetal growth. STUDY DESIGN, SIZE, DURATION: In a case-control study, placental tissue and maternal blood were collected at delivery from 40 control pregnant women and 38 PCOS women with uncomplicated pregnancy. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women with PCOS were recruited at two medical centers and pregnant controls were recruited at one of these centers. Placental mRNA expression of genes encoding proteins related to steroid action, metabolic pathways and cytokines was analyzed by quantitative RT-PCR. Phosphorylated placental STAT3 (P-STAT3) and mTOR targets was measured by western blot. Levels of sex steroids in serum were determined by mass spectrometry. MAIN RESULTS AND THE ROLE OF CHANCE: Placental P-STAT3 (Tyr-705) was increased in women with PCOS (P < 0.05) versus controls. Placental mTOR signaling was not affected in PCOS women when compared with controls. Circulating levels of androstenedione, androst-5-ene-3ß, 17ß-diol, testosterone, 5α-dihydrotestosterone and etiocholanolone glucuronide were higher and estradiol lower in women with PCOS than in controls (all P < 0.05). No correlation between sex steroid levels in serum and P-STAT3 was observed. LIMITATIONS, REASONS FOR CAUTION: Women with PCOS and pregnancy complications were excluded to avoid the confounding effects of placental pathologies, which could modify STAT3 and mTOR signaling. Moreover, 97.4% of women with PCOS in the study displayed oligoamenorrhea at diagnosis. Thus, the current findings could be restricted to PCOS women with the oligo-anovulatory phenotype without pregnancy complications. WIDER IMPLICATIONS OF THE FINDINGS: Phosphorylation of STAT3 is increased in the placenta from women with PCOS and uncomplicated pregnancies, indicating that specific metabolic placental pathways are activated in the absence of obstetric and perinatal complications. STUDY FUNDING/COMPETING INTERESTS: The work was supported by the Swedish Medical Research Council (Project No. 2011-2732 and 2014-2775); Jane and Dan Olsson Foundation, Wilhelm and Martina Lundgrens's Science Fund; Hjalmar Svensson Foundation (E.S.-V and M.M.); Adlerbert Research Foundation; Swedish federal government under the LUA/ALF agreement ALFFGBG-136481 and 429501 and the Regional Research and Development agreement (VGFOUREG-5171, -11296 and -7861). MM thanks the Becas Chile Programme (Chile) and University of Chile for financial support through a postdoctoral fellowship. There are no competing interests.


Subject(s)
Polycystic Ovary Syndrome/metabolism , STAT3 Transcription Factor/metabolism , Adult , Case-Control Studies , Female , Gene Expression , Humans , Phosphorylation , Pregnancy , Pregnancy Outcome , RNA, Messenger/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
J Neuroendocrinol ; 25(6): 580-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23414303

ABSTRACT

Interleukin (IL)-1 and IL-6 are immune modulating cytokines that also affect metabolic function because both IL-1 receptor I deficient (IL-1RI⁻/⁻) and IL-6 deficient (IL-6⁻/⁻) mice develop late-onset obesity and leptin resistance. Both IL-1 and IL-6 appear to target the central nervous system (CNS) to increase energy expenditure. The hypothalamic arcuate nucleus (ARC) is a major relay between the periphery and CNS in body fat regulation (e.g. by being a target of leptin). The present study aimed to investigate the possible mechanisms responsible for the effects exerted by endogenous IL-1 and IL-6 on body fat at the level of the ARC, as well as possible interactions between IL-1 and IL-6. Therefore, we measured the gene expression of neuropeptides of the ARC involved in energy balance in IL-1RI⁻/⁻ and IL-6⁻/⁻ mice. We also investigated the interactions between expression of IL-1 and IL-6 in these mice, and mapped IL-6 receptor α (IL-6Rα) in the ARC. The expression of the obesity promoting peptide neuropeptide Y (NPY), found in the ARC, was increased in IL-1RI⁻/⁻ mice. The expression of NPY and agouti-related peptide (AgRP), known to be co-expressed with NPY in ARC neurones, was increased in cold exposed IL-6⁻/⁻ mice. IL-6Rα immunoreactivity was densely localised in the ARC, especially in the medial part, and was partly found in NPY positive cell bodies and also α-melanocyte-stimulating hormone positive cell bodies. The expression of hypothalamic IL-6 was decreased in IL-1RI⁻/⁻ mice, whereas IL-1ß expression was increased in IL-6⁻/⁻ mice. The results of the present study indicate that depletion of the activity of the fat suppressing cytokines IL-1 and IL-6 in knockout mice can increase the expression of the obesity promoting neuropeptide NPY in the ARC. Depletion of IL-1 activity suppresses IL-6 expression, and IL-6Rα-like immunoreactivity is present in neurones in the medial ARC, including neurones containing NPY. Therefore, IL-6, IL-1 and NPY/AgRP could interact at the level of the hypothalamic ARC in the regulation of body fat.


Subject(s)
Adipose Tissue/physiology , Arcuate Nucleus of Hypothalamus/physiology , Body Composition , Interleukin-1/physiology , Interleukin-6/physiology , Animals , Base Sequence , DNA Primers , Hypothalamus/metabolism , Hypothalamus/physiology , Interleukin-1/genetics , Interleukin-1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptide Y/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism
4.
J Neuroendocrinol ; 23(6): 501-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21438929

ABSTRACT

Lipocalin-type prostaglandin D2-synthase (L-PGDS) is the main producer of prostaglandin D2 (PGD2) in the central nervous system (CNS). Animal data suggest effects of central nervous L-PGDS in the regulation of food intake and obesity. No human data are available. We hypothesised that a role for CNS L-PGDS in metabolic function in humans would be reflected by correlations with known orexigenic neuropeptides. Cerebrospinal fluid (CSF) and serum samples were retrieved from 26 subjects in a weight loss study, comprising a 3-week dietary lead-in followed by 12-weeks of leptin or placebo treatment. At baseline, CSF L-PGDS was positively correlated with neuropeptide Y (NPY) (ρ = 0.695, P < 0.001, n = 26) and galanin (ρ = 0.651, P < 0.001) as well as visceral adipose tissue (ρ = 0.415, P = 0.035). Furthermore, CSF L-PGDS was inversely correlated with CSF leptin (ρ = -0.529, P = 0.005) and tended to correlate inversely with s.c. adipose tissue (ρ = -0.346, P = 0.084). As reported earlier, leptin treatment had no effect on weight loss and did not affect CSF L-PGDS or NPY levels compared to placebo. After weight loss, the change of CSF L-PGDS was significantly correlated with the change of CSF NPY levels (ρ = 0.604, P = 0.004, n = 21). Because of the correlation between baseline CSF L-PGDS levels and visceral adipose tissue, we examined associations with hypothalamic-pituitary-adrenal (HPA) axis components. Baseline CSF L-PGDS was correlated with corticotrophin-releasing hormone (ρ = 0.764, P < 0.001) and ß-endorphin (ρ = 0.491, P < 0.001). By contrast, serum L-PGDS was not correlated with any of the measured variables either at baseline or after treatment. In summary, CSF L-PGDS was correlated with orexigenic neuropeptides, visceral fat distribution and central HPA axis mediators. The importance of these findings is unclear but could suggest a role for CSF L-PGDS in the regulation of visceral obesity by interaction with the neuroendocrine circuits regulating appetite and fat distribution. Further interventional studies will be needed to characterise these interactions in more detail.


Subject(s)
Adiposity/physiology , Central Nervous System/enzymology , Hypothalamo-Hypophyseal System/physiology , Intramolecular Oxidoreductases/cerebrospinal fluid , Lipocalins/cerebrospinal fluid , Neuropeptides/metabolism , Obesity , Pituitary-Adrenal System/physiology , Adult , Aged , Biomarkers/analysis , Biomarkers/metabolism , Central Nervous System/metabolism , Humans , Hypothalamo-Hypophyseal System/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/physiology , Intracellular Signaling Peptides and Proteins/blood , Intracellular Signaling Peptides and Proteins/cerebrospinal fluid , Intracellular Signaling Peptides and Proteins/metabolism , Intramolecular Oxidoreductases/metabolism , Leptin/therapeutic use , Lipocalins/blood , Lipocalins/metabolism , Male , Middle Aged , Neuropeptides/blood , Neuropeptides/cerebrospinal fluid , Obesity/blood , Obesity/cerebrospinal fluid , Obesity/diet therapy , Obesity/drug therapy , Orexins , Pituitary-Adrenal System/metabolism , Placebos
5.
Diabetologia ; 53(6): 1174-83, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20217038

ABSTRACT

AIMS/HYPOTHESIS: A hallmark feature of the metabolic syndrome is abnormal glucose metabolism which can be improved by exercise. Recently the orphan nuclear receptor subfamily 4, group A, member 1 (NUR77) was found to be induced by exercise in muscle and was linked to transcriptional control of genes involved in lipid and glucose metabolism. Here we investigated if overexpression of Nur77 (also known as Nr4a1) in skeletal muscle has functional consequences for lipid and/or glucose metabolism. METHODS: L6 rat skeletal muscle myotubes were infected with a Nur77-coding adenovirus and lipid and glucose oxidation was measured. Nur77 was also overexpressed in skeletal muscle of chow- and fat-fed rats and the effects on glucose and lipid metabolism evaluated. RESULTS: Nur77 overexpression had no effect on lipid oxidation in L6 cells or rat muscle, but did increase glucose oxidation and glycogen synthesis in L6 cells. In chow- and high-fat-fed rats, Nur77 overexpression by electrotransfer significantly increased basal glucose uptake and glycogen synthesis, but no increase in insulin-stimulated glucose metabolism was observed. Nur77 electrotransfer was associated with increased production of GLUT4 and glycogenin and increased hexokinase and phosphofructokinase activity. Interestingly, Nur77 expression in muscle biopsies from obese men was significantly lower than in those from lean men and was closely correlated with body-fat content and insulin sensitivity. CONCLUSIONS/INTERPRETATION: Our data provide compelling evidence that NUR77 is a functional regulator of glucose metabolism in skeletal muscle in vivo. Importantly, the diminished content in muscle of obese insulin-resistant men suggests that it might be a potential therapeutic target for the treatment of dysregulated glucose metabolism.


Subject(s)
Glucose/metabolism , Muscle, Skeletal/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Obesity/metabolism , Adipose Tissue , Adult , Analysis of Variance , Animals , Blotting, Western , Cell Line , Cells, Cultured , Dietary Fats , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Humans , Insulin Resistance/genetics , Lipid Metabolism/genetics , Male , Middle Aged , Muscle, Skeletal/cytology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Obesity/genetics , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction
6.
J Neuroendocrinol ; 21(7): 620-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19490366

ABSTRACT

Interleukin (IL)-6 is a pro-inflammatory cytokine that also affects metabolic function because IL-6 depleted (IL-6(-/-)) mice develop late-onset obesity. IL-6 appears to act in the central nervous system, presumably in the hypothalamus, to increase energy expenditure that appears to involve stimulation of the sympathetic nervous system. In the present study, we explored possible central mechanisms for the effects exerted by IL-6 on body fat. Therefore, we measured the effects of IL-6 depletion in IL-6(-/-) mice on expression of key hypothalamic peptide genes involved in energy balance by the real time polymerase chain reaction. Additionally, co-localisation between such peptides and IL-6 receptor alpha was investigated by immunohistochemistry. IL-6 deficiency decreased the expression of several peptides found in the paraventricular nucleus (PVN), which is a nucleus that has been attributed an adipostatic function. For example, corticotrophin-releasing hormone (CRH), which is reported to stimulate the sympathetic nervous system, was decreased by 40% in older IL-6(-/-) mice. Oxytocin, which is reported to prevent obesity, was also decreased in older IL-6(-/-) animals, as was arginine vasopressin (AVP). The IL-6 receptor alpha was abundantly expressed in the PVN, but also in the supraoptic nucleus, and was shown to be co-expressed to a high extent with CRH, AVP, oxytocin and thyrotrophin-releasing hormone. These data indicate that depletion of endogenous IL-6, a body fat suppressing cytokine, is associated with the decreased expression of CRH and oxytocin (i.e. energy balance regulating peptides) as well as AVP in the PVN. Because IL-6 receptor alpha is co-expressed with CRH, oxytocin and AVP, IL-6 could stimulate the expression of these peptides directly.


Subject(s)
Interleukin-6/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Supraoptic Nucleus/metabolism , Adiposity/genetics , Adiposity/physiology , Animals , Arginine Vasopressin/metabolism , Cell Count , Corticotropin-Releasing Hormone/metabolism , Immunohistochemistry , Interleukin-6/deficiency , Interleukin-6/genetics , Interleukin-6 Receptor alpha Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxytocin/metabolism , Polymerase Chain Reaction , RNA, Messenger/metabolism , Thyrotropin-Releasing Hormone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...