Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 11(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38922019

ABSTRACT

Despite the annual vaccination of livestock against foot and mouth disease (FMD) in the United Arab Emirates (UAE), outbreaks of the disease continue to be reported. The effective control of field outbreaks by vaccination requires that the vaccines used are antigenically matched to circulating field FMD viruses. In this study, a vaccine matching analysis was performed using the two-dimensional virus neutralization test (VNT) for three field isolates belonging to the O/ME-SA/PanAsia-2/ANT-10 and O/ME-SA/SA-2018 lineages collected from different FMD outbreaks that occurred within the Abu Dhabi Emirate in 2021 affecting Arabian oryx (Oryx leucoryx), goat, and sheep. In addition, post-vaccination antibodies in sheep and goats were measured using solid-phase competitive ELISA (SPCE) for FMDV serotypes A and O at five months after a single vaccine dose and a further 28 days later after a second dose of the FMD vaccine. An analysis of vaccine matching revealed that five out of the six vaccine strains tested were antigenically matched to the UAE field isolates, with r1-values ranging between 0.32 and 0.75. These results suggest that the vaccine strains (O-3039 and O1 Manisa) included in the FMD vaccine used in the Abu Dhabi Emirate are likely to provide protection against outbreaks caused by the circulating O/ME-SA/PanAsia-2/ANT-10 and O/ME-SA/SA-2018 lineages. All critical residues at site 1 and site 3 of VP1 were conserved in all isolates, although an analysis of the VP1-encoding sequences revealed 14-16 amino acid substitutions compared to the sequence of the O1 Manisa vaccine strain. This study also reports on the results of post-vaccination monitoring where the immunization coverage rates against FMDV serotypes A and O were 47% and 69% five months after the first dose of the FMD vaccine, and they were increased to 81 and 88%, respectively, 28 days after the second dose of the vaccine. These results reinforce the importance of using a second booster dose to maximize the impact of vaccination. In conclusion, the vaccine strains currently used in Abu Dhabi are antigenically matched to circulating field isolates from two serotype O clades (O/ME-SA/PanAsia-2/ANT-10 sublineage and O/ME-SA/SA-2018 lineage). The bi-annual vaccination schedule for FMD in the Abu Dhabi Emirate has the potential to establish a sufficient herd immunity, especially when complemented by additional biosecurity measures for comprehensive FMD control. These findings are pivotal for the successful implementation of the region's vaccination-based FMD control policy, showing that high vaccination coverage and the wide-spread use of booster doses in susceptible herds is required to achieve a high level of FMDV-specific antibodies in vaccinated animals.

2.
Vet Sci ; 11(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38250938

ABSTRACT

Foot-and-mouth disease (FMD) is an endemic disease in the United Arab Emirates (UAE) in both wild and domestic animals. Despite this, no systematic FMD outbreak investigation accompanied by molecular characterisation of FMD viruses (FMDVs) in small ruminants or cattle has been performed, and only a single report that describes sequences for FMDVs in wildlife from the Emirate has been published. In this study, FMD outbreaks that occurred in 2021 in five animal farms and one animal market in the Emirate of Abu Dhabi were investigated. Cases involved sheep, goats, and cattle, as well as Arabian oryx (Oryx leucoryx). Twelve samples were positive for FMDV via RT-qPCR, and four samples (Arabian oryx n = 1, goat n = 2, and sheep n = 1) were successfully genotyped using VP1 nucleotide sequencing. These sequences shared 88~98% identity and were classified within the serotype O, Middle East-South Asia topotype (O/ME-SA). Phylogenetic analysis revealed that the Arabian oryx isolate (UAE/2/2021) belonged to the PanAsia-2 lineage, the ANT-10 sublineage, and was closely related to the FMDVs recently detected in neighbouring countries. The FMDV isolates from goats (UAE/10/2021 and UAE/11/2021) and from sheep (UAE/14/2021) formed a monophyletic cluster within the SA-2018 lineage that contained viruses from Bangladesh, India, and Sri Lanka. This is the first study describing the circulation of the FMDV O/ME-SA/SA-2018 sublineage in the UAE. These data shed light on the epidemiology of FMD in the UAE and motivate further systematic epidemiological studies and genomic sequencing to enhance the ongoing national animal health FMD control plan.

3.
Animals (Basel) ; 13(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37893972

ABSTRACT

Peste des petits ruminants (PPR) is a contagious and economically important transboundary viral disease of small ruminants. The United Arab Emirates (UAE) national animal health plan aimed to control and eradicate PPR from the country by following the global PPR control and eradication strategy which adopts small ruminants' mass vaccination to eradicate the disease from the globe by 2030. A smart vaccination approach, which is less expensive and has longer-term sustainable benefits, is needed to accelerate the eradication of PPR. In this study, a mathematical algorithm was developed based on animals' identification and registration data, belonging to the Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), and other different parameters related to PPR risk occurrence. The latter included animal holding vaccination history, the number of animals per holding, forecasting of the number of animals and newborns per holding, the proximity of an animal holding to a PPR outbreak and the historical animal holding owner vaccination rejection attitude. The developed algorithm successfully prioritized animal holdings at risk of PPR infection within Abu Dhabi Emirate to be targeted by vaccination. This in turn facilitated the mobilization of field vaccination teams to target specific sheep and goat holdings to ensure the generation of immunity against the disease on a risk-based approach. The vaccination coverage of the targeted livestock population was increased to 86% and the vaccination rejection attitude was reduced by 35%. The duration of the vaccination campaign was reduced to 30 compared to 70 working days and hence can alleviate the depletion of human and logistic resources commonly used in classical mass vaccination campaigns. The results obtained from implementing the algorithm-based PPR vaccination campaign will reduce the negative impact of PPR on the UAE livestock sector and accelerate the achievement of the national PPR eradication plan requirements.

4.
Vet Sci ; 10(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36669056

ABSTRACT

(1) Background: Peste des petits ruminants (PPR) is a highly contagious animal disease affecting small ruminants, leading to significant economic losses. There has been little published data on PPR virus (PPRV) infection in the United Arab Emirates (UAE); (2) Methods: four outbreaks reported in goats and Dama gazelle in 2021 were investigated using pathological and molecular testing; (3) Results: The infected animals showed symptoms of dyspnea, oculo-nasal secretions, cough, and diarrhea. Necropsy findings were almost similar in all examined animals and compliant to the classical forms of the disease. Phylogenetic analysis based on N gene and F gene partial sequences revealed a circulation of PPRV Asian lineage IV in the UAE, and these sequences clustered close to the sequences of PPRV from United Arab Emirates, Pakistan, Tajikistan and Iran; (4) Conclusions: PPRV Asian lineage IV is currently circulating in the UAE. To the best of our knowledge, this is a first study describing PPRV in domestic small ruminant in the UAE.

5.
Vet Sci ; 9(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35448652

ABSTRACT

BACKGROUND: Fowl adenovirus serotype 4 (FAdV-4), causing inclusion body hepatitis (IBH) and hydropericardium hepatitis syndrome (HPS), is responsible for the significant economic losses in poultry industry worldwide. This study describes FAdV disease and molecular characteristics of the virus as the first report in UAE. METHODOLOGY: Clinical, necropsy, histopathology, qPCR and phylogenetic analysis of hexon gene were used to diagnose and characterize the virus. RESULTS: The age of the infected broiler chicken was 2-4 weeks. The morbidity and mortality rates ranged between 50 and 100% and 44 and 100%, respectively. Clinically, sudden onset, diarrhea, anemia and general weakness were recorded. At necropsy, acute necrotic hepatitis, with swollen, yellowish discoloration, enlarged and friable liver; hydropericarditis with hydropericardium effusions; and enlarged mottled spleen were observed. Histopathology examination revealed degeneration and necrosis, lymphocytic infiltration and inclusion bodies. The qPCR analysis detected the virus in all samples tested. Hexon gene sequence analysis identified FAdV serotype 4, species C as the major cause of FAdV infections in UAE in 2020, and this strain was closely related to FAdV-4 circulating in Saudi Arabia, Pakistan, Nepal and China. CONCLUSION: The serotype 4, species C, was the common FAdV strain causing IBH and HPS episodes in the region. This result may help design effective vaccination programs that rely on field serotypes.

6.
Animals (Basel) ; 11(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34573618

ABSTRACT

Peste des petits ruminants (PPR) is an important infectious viral disease of domestic small ruminants that threatens the food security and sustainable livelihood of farmers across Middle East, Africa, and Asia. The objective of this research is to analyze the disease's spread and its impacts on direct government costs through conducting three simulations of different control strategies to reduce and quickly eradicate PPR from the United Arab Emirates in the near future. A Modified Animal Disease Spread Model was developed in this study to suit the conditions of the United Arab Emirates. The initial scenario represents when mass vaccination is ceased, and moderate movement restrictions are applied. The second scenario is based on mass vaccination and stamping out the disease, whereas the third simulation scenario assumes mass and ring vaccination when needed, very strict movement control, and stamping out. This study found that the third scenario is the most effective in controlling and eradicating PPR from the UAE. The outbreak duration in days was reduced by 57% and the number of infected animals by 77% when compared to the other scenarios. These results are valuable to the country's animal health decision-makers and the government's efforts to report to the World Animal Health Organization (OIE) regarding the progress made towards declaration of the disease's eradication. They are also useful to other concerned entities in other Middle Eastern, North African, and Asian countries where the disease is spreading.

7.
Emerg Microbes Infect ; 6(11): e101, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29116217

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) was identified on the Arabian Peninsula in 2012 and is still causing cases and outbreaks in the Middle East. When MERS-CoV was first identified, the closest related virus was in bats; however, it has since been recognized that dromedary camels serve as a virus reservoir and potential source for human infections. A total of 376 camels were screened for MERS-Cov at a live animal market in the Eastern Region of the Emirate of Abu Dhabi, UAE. In all, 109 MERS-CoV-positive camels were detected in week 1, and a subset of positive camels were sampled again weeks 3 through 6. A total of 126 full and 3 nearly full genomes were obtained from 139 samples. Spike gene sequences were obtained from 5 of the 10 remaining samples. The camel MERS-CoV genomes from this study represent 3 known and 2 potentially new lineages within clade B. Within lineages, diversity of camel and human MERS-CoV sequences are intermixed. We identified sequences from market camels nearly identical to the previously reported 2015 German case who visited the market during his incubation period. We described 10 recombination events in the camel samples. The most frequent recombination breakpoint was the junctions between ORF1b and S. Evidence suggests MERS-CoV infection in humans results from continued introductions of distinct MERS-CoV lineages from camels. This hypothesis is supported by the camel MERS-CoV genomes sequenced in this study. Our study expands the known repertoire of camel MERS-CoVs circulating on the Arabian Peninsula.


Subject(s)
Camelus/virology , Genetic Variation , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Animals , Cluster Analysis , Female , Genome, Viral , Genotype , Male , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics , United Arab Emirates
8.
Virus Genes ; 50(3): 509-13, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25653016

ABSTRACT

High seroprevalence of Middle East respiratory syndrome corona virus (MERS-CoV) in dromedary camels has been previously reported in United Arab Emirates (UAE). However, the molecular detection of the virus has never been reported before in UAE. Of the 7,803 nasal swabs tested in the epidemiological survey, MERS-CoV nucleic acid was detected by real-time PCR in a total of 126 (1.6 %) camels. Positive camels were detected at the borders with Saudi Arabia and Oman and in camels' slaughter houses. MERS-CoV partial sequences obtained from UAE camels were clustering with human- and camel-derived MERS-CoV sequences in the same geographic area. Results provide further evidence of MERS-CoV zoonosis.


Subject(s)
Camelus/virology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Animals , Cluster Analysis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Molecular Epidemiology , Molecular Sequence Data , Nasal Mucosa/virology , Phylogeny , Prevalence , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology , United Arab Emirates/epidemiology , Zoonoses/epidemiology , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...