Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(29): e2407330121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38980901

ABSTRACT

Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with ~20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (~2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.


Subject(s)
Kinesins , Liposomes , Microtubules , Kinesins/metabolism , Kinesins/chemistry , Liposomes/chemistry , Liposomes/metabolism , Microtubules/metabolism , Biological Transport , Animals , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/chemistry , Optical Tweezers
2.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38076816

ABSTRACT

Kinesin-1 ensembles maneuver vesicular cargoes through intersections in the 3-dimensional (3D) intracellular microtubule (MT) network. To characterize directional outcomes (straight, turn, terminate) at MT intersections, we challenge 350 nm fluid-like liposomes transported by ~10 constitutively active, truncated kinesin-1 KIF5B (K543) with perpendicular 2-dimensional (2D) and 3D intersections in vitro. Liposomes frequently pause at 2D and 3D intersections (~2s), suggesting that motor teams can simultaneously engage each MT and undergo a tug-of-war. Once resolved, the directional outcomes at 2D MT intersections have a straight to turn ratio of 1.1; whereas at 3D MT intersections, liposomes more frequently go straight (straight to turn ratio of 1.8), highlighting that spatial relationships at intersections bias directional outcomes. Using 3D super-resolution microscopy (STORM), we define the gap between intersecting MTs and the liposome azimuthal approach angle heading into the intersection. We develop an in silico model in which kinesin-1 motors diffuse on the liposome surface, simultaneously engage the intersecting MTs, generate forces and detach from MTs governed by the motors' mechanochemical cycle, and undergo a tug-of-war with the winning team determining the directional outcome in 3D. The model predicts that 1-3 motors typically engage the MT, consistent with optical trapping measurements. Modeled liposomes also predominantly go straight through 3D intersections over a range of intersection gaps and liposome approach angles, even when obstructed by the crossing MT. Our observations and modeling offer mechanistic insights into how cells might tune the MT cytoskeleton, cargo, and motors to modulate cargo transport.

3.
Proc Natl Acad Sci U S A ; 117(27): 15632-15641, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571914

ABSTRACT

KIF3AC is a mammalian neuron-specific kinesin-2 implicated in intracellular cargo transport. It is a heterodimer of KIF3A and KIF3C motor polypeptides which have distinct biochemical and motile properties as engineered homodimers. Single-molecule motility assays show that KIF3AC moves processively along microtubules at a rate faster than expected given the motility rates of the KIF3AA and much slower KIF3CC homodimers. To resolve the stepping kinetics of KIF3A and KIF3C motors in homo- and heterodimeric constructs and determine their transport potential under load, we assayed motor activity using interferometric scattering microscopy and optical trapping. The distribution of stepping durations of KIF3AC molecules is described by a rate (k1 = 11 s-1) without apparent kinetic asymmetry. Asymmetry was also not apparent under hindering or assisting mechanical loads in the optical trap. KIF3AC shows increased force sensitivity relative to KIF3AA yet is more capable of stepping against mechanical load than KIF3CC. Interestingly, the behavior of KIF3C mirrors prior studies of kinesins with increased interhead compliance. Microtubule gliding assays containing 1:1 mixtures of KIF3AA and KIF3CC result in speeds similar to KIF3AC, suggesting the homodimers mechanically impact each other's motility to reproduce the behavior of the heterodimer. Our observations are consistent with a mechanism in which the stepping of KIF3C can be activated by KIF3A in a strain-dependent manner, similar to application of an assisting load. These results suggest that the mechanochemical properties of KIF3AC can be explained by the strain-dependent kinetics of KIF3A and KIF3C.


Subject(s)
Kinesins/metabolism , Microtubules/metabolism , Protein Multimerization/physiology , Biomechanical Phenomena , Kinetics , Recombinant Proteins/metabolism
4.
J Biol Chem ; 293(29): 11283-11295, 2018 07 20.
Article in English | MEDLINE | ID: mdl-29844014

ABSTRACT

Microtubule-based molecular motors mediate transport of intracellular cargo to subdomains in neurons. Previous evidence has suggested that the anesthetic propofol decreases the average run-length potential of the major anterograde transporters kinesin-1 and kinesin-2 without altering their velocity. This effect on kinesin has not been observed with other inhibitors, stimulating considerable interest in the underlying mechanism. Here, we used a photoactive derivative of propofol, meta-azipropofol (AziPm), to search for potential propofol-binding sites in kinesin. Single-molecule motility assays confirmed that AziPm and propofol similarly inhibit kinesin-1 and kinesin-2. We then applied AziPm in semiquantitative radiolabeling and MS microsequencing assays to identify propofol-binding sites within microtubule-kinesin complexes. The radiolabeling experiments suggested preferential AziPm binding to the ATP-bound microtubule-kinesin complex. The photolabeled residues were contained within the kinesin motor domain rather than at the motor domain-ß-tubulin interface. No residues within the P-loop of kinesin were photolabeled, indicating an inhibitory mechanism that does not directly affect ATPase activity and has an effect on run length without changing velocity. Our results also indicated that when the kinesin motor interacts with the microtubule during its processive run, a site forms in kinesin to which propofol can then bind and allosterically disrupt the kinesin-microtubule interaction, resulting in kinesin detachment and run termination. The discovery of the propofol-binding allosteric site in kinesin may improve our understanding of the strict coordination of the motor heads during the processive run. We hypothesize that propofol's potent effect on intracellular transport contributes to various components of its anesthetic action.


Subject(s)
Allosteric Site/drug effects , Anesthetics, Intravenous/pharmacology , Kinesins/metabolism , Microtubules/metabolism , Propofol/pharmacology , Amino Acid Sequence , Binding Sites/drug effects , Crystallography, X-Ray , Humans , Kinesins/chemistry , Microtubules/chemistry , Molecular Docking Simulation
5.
Proc Natl Acad Sci U S A ; 114(21): E4281-E4287, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28484025

ABSTRACT

Propofol is the most widely used i.v. general anesthetic to induce and maintain anesthesia. It is now recognized that this small molecule influences ligand-gated channels, including the GABAA receptor and others. Specific propofol binding sites have been mapped using photoaffinity ligands and mutagenesis; however, their precise target interaction profiles fail to provide complete mechanistic underpinnings for the anesthetic state. These results suggest that propofol and other common anesthetics, such as etomidate and ketamine, may target additional protein networks of the CNS to contribute to the desired and undesired anesthesia end points. Some evidence for anesthetic interactions with the cytoskeleton exists, but the molecular motors have received no attention as anesthetic targets. We have recently discovered that propofol inhibits conventional kinesin-1 KIF5B and kinesin-2 KIF3AB and KIF3AC, causing a significant reduction in the distances that these processive kinesins can travel. These microtubule-based motors are highly expressed in the CNS and the major anterograde transporters of cargos, such as mitochondria, synaptic vesicle precursors, neurotransmitter receptors, cell signaling and adhesion molecules, and ciliary intraflagellar transport particles. The single-molecule results presented show that the kinesin processive stepping distance decreases 40-60% with EC50 values <100 nM propofol without an effect on velocity. The lack of a velocity effect suggests that propofol is not binding at the ATP site or allosteric sites that modulate microtubule-activated ATP turnover. Rather, we propose that a transient propofol allosteric site forms when the motor head binds to the microtubule during stepping.


Subject(s)
Anesthetics, General/pharmacology , Hypnotics and Sedatives/pharmacology , Kinesins/antagonists & inhibitors , Propofol/pharmacology , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Biological Transport/physiology , Humans , Kinesins/metabolism , Mice , Microtubules/metabolism , Protein Binding/physiology , Tubulin/metabolism
6.
Biophys J ; 109(7): 1472-82, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26445448

ABSTRACT

Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 µm and matching those exhibited by conventional kinesin-1. This result was unexpected because KIF3AC exhibits the canonical kinesin-2 neck-linker sequence that has been reported to be responsible for shorter run lengths observed for another heterotrimeric kinesin-2, KIF3AB. However, KIF3AB with its native neck linker and helix α7 is also highly processive with run lengths of ∼1.62 µm and exceeding those of KIF3AC and kinesin-1. Loop L11, a component of the microtubule-motor interface and implicated in activating ADP release upon microtubule collision, is significantly extended in KIF3C as compared with other kinesins. A KIF3AC encoding a truncation in KIF3C loop L11 (KIF3ACΔL11) exhibited longer run lengths at ∼1.55 µm than wild-type KIF3AC and were more similar to KIF3AB run lengths, suggesting that L11 also contributes to tuning motor processivity. The steady-state ATPase results show that shortening L11 does not alter kcat, consistent with the observation that single molecule velocities are not affected by this truncation. However, shortening loop L11 of KIF3C significantly increases the microtubule affinity of KIF3ACΔL11, revealing another structural and mechanistic property that can modulate processivity. The results presented provide new, to our knowledge, insights to understand structure-function relationships governing processivity and a better understanding of the potential of KIF3AC for long-distance transport in neurons.


Subject(s)
Kinesins/metabolism , Microtubules/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , Biological Transport/physiology , Dimerization , Escherichia coli , Kinesins/genetics , Mice , Microscopy, Fluorescence , Molecular Sequence Data , Protein Conformation , Quantum Dots , Sequence Homology , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...