Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 131(2): 159-63, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11042087

ABSTRACT

Bacteriophage PRD1 has remarkable structural similarities to adenovirus, but is unusual in containing a membrane beneath its icosahedral capsid. Its monomeric receptor-binding protein, P2, is part of a complex at each capsid vertex and so is the functional equivalent of adenovirus fiber. P2 has been crystallized by the "hanging-drop" method of vapor diffusion and two different crystal forms were obtained. Macroseeding, used to increase the size of the initial small needles, gave rod-shaped crystals. These grew to a size of 0.08 x 0.08 x 0.50 mm(3) and diffracted to 2.6 A resolution. They have the orthorhombic space group P222(1), with unit cell dimensions a = 137.8 A, b = 46.5 A, c = 136.4 A. A few single crystals of a second form were grown without seeding under slightly different conditions. A parallelepiped crystal (0.10 x 0.10 x 0.35 mm(3)), with space group C222(1) and unit cell dimensions a = 182.3 A, b = 204.8 A, c = 133.3 A, diffracted to 3.5 A resolution. A rotation function for the second form revealed that four monomers of P2 are related by a noncrystallographic twofold axis. The structure of P2 will reveal how this arrangement relates to the trimeric adenovirus fiber.


Subject(s)
Capsid Proteins , Capsid/chemistry , Tectiviridae/chemistry , Crystallization , Protein Binding , Protein Structure, Quaternary , X-Ray Diffraction
2.
Cell ; 98(6): 825-33, 1999 Sep 17.
Article in English | MEDLINE | ID: mdl-10499799

ABSTRACT

The unusual bacteriophage PRD1 features a membrane beneath its icosahedral protein coat. The crystal structure of the major coat protein, P3, at 1.85 A resolution reveals a molecule with three interlocking subunits, each with two eight-stranded viral jelly rolls normal to the viral capsid, and putative membrane-interacting regions. Surprisingly, the P3 molecule closely resembles hexon, the equivalent protein in human adenovirus. Both viruses also have similar overall architecture, with identical capsid lattices and attachment proteins at their vertices. Although these two dsDNA viruses infect hosts from very different kingdoms, their striking similarities, from major coat protein through capsid architecture, strongly suggest their evolutionary relationship.


Subject(s)
Capsid Proteins , Capsid/chemistry , Tectiviridae/chemistry , Adenoviruses, Human/chemistry , Amino Acid Sequence , Crystallization , Crystallography, X-Ray , Evolution, Molecular , Models, Molecular , Molecular Sequence Data , Protein Conformation , Synchrotrons
SELECTION OF CITATIONS
SEARCH DETAIL
...