Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
RSC Adv ; 11(15): 8682-8693, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-35423389

ABSTRACT

In vivo cancer detection based on the mid-infrared molecular fingerprint of tissue is promising for the fast diagnosis and treatment of suspected cancer patients. Few materials are mid-infrared transmissive, even fewer, which can be converted into functional, low-loss optical fibres for in vivo non-invasive testing. Chalcogenide-based glass optical fibres are, however, one of the few. These glasses are transmissive in the mid-infrared and are currently under development for use in molecular sensing devices. The cytotoxicity of these materials is however unknown. The cytotoxicity of Ge-Sb-Se chalcogenide optical glass fibres on 3T3 mouse fibroblast cells is here investigated. Fibres exposed to four different pre-treatment conditions are used: as-drawn (AD), propylamine-etched (PE), oxidised-and-washed (OW) and oxidised (Ox). To achieve the latter two conditions, fibres are treated with H2O2(aqueous (aq.)) and dried to produce a surface oxide layer; this is either washed off (OW) or left on the glass surface (Ox). Cellular response is investigated via 3 day elution and 14 day direct contact trials. The concentration of the metalloids (Ge, Sb and Se) in each leachate was measured via inductively coupled plasma mass spectrometry. Cell viability is assessed using the neutral red assay and scanning electron microscopy. The concentration of Ge, Sb and Se ions after a 3 day dissolution was as follows. In AD leachates, Ge: 0.40 mg L-1, Sb: 0.17 mg L-1, and Se: 0.06 mg L-1. In PE leachates, Ge: 0.22 mg L-1, Sb: 0.15 mg L-1, and Se: 0.02 mg L-1. In Ox leachates, Ge: 823.8 mg L-1, Sb: 2586.6 mg L-1, and Se: 3750 mg L-1. Direct contact trials show confluent cell layers on AD, PE and OW fibres after 14 days, while no cells are observed on the Ox surfaces. A >50% cell viability is observed in AD, PE and OW eluates after 3 days, when compared with Ox eluates (<10% cell viability). Toxicity in Ox is attributed to the notable pH change, from neutral pH 7.49 to acidic pH 2.44, that takes place on dissolution of the surface oxide layer in the growth media. We conclude, as-prepared Ge-Sb-Se glasses are cytocompatible and toxicity arises when an oxide layer is forced to develop on the glass surface.

2.
Sensors (Basel) ; 20(16)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824714

ABSTRACT

A diode-pumped Q-switched Er3+:ZBLAN double-clad, single-transverse mode fiber laser is practically realized. The Q-switched laser characteristics as a function of pump power, repetition rate, and fiber length are experimentally investigated. The results obtained show that the Q-switched operation with 46 µJ pulse energy, 56 ns long pulses, and 0.821 kW peak power is achieved at a pulse repetition rate of 10 kHz. To the best of our knowledge, this is the highest-ever demonstrated peak power emitted from an actively Q-switched, single-transverse mode Er3+:ZBLAN fiber laser operating near 2.8 µm.

3.
Opt Express ; 28(8): 12373-12384, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403735

ABSTRACT

1000 ppmw Sm3+-doped Ge19.4Sb9.7Se67.9Ga3 atomic % chalcogenide bulk glass and unstructured fiber are prepared. Near- and mid-infrared absorption spectra of the bulk glass reveal Sm3+ electronic absorption bands, and extrinsic vibrational absorption bands, due to host impurities. Fiber photoluminescence, centred at 3.75 µm and 7.25 µm, is measured when pumping at either 1300 or 1470 nm. Pumping at 1470 nm enables the photoluminescent lifetime at 7.3 µm to be measured for the first time which was ∼100 µs. This is the longest to date, experimentally observed lifetime in the 6.5-9 µm wavelength-range of a lanthanide-doped chalcogenide glass fiber.

4.
Opt Express ; 27(16): 22275-22288, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510524

ABSTRACT

A new method (FTIR continuous dn / dT method, n is refractive index and T temperature) for measuring the continuous thermo-optic coefficients of thin transparent films in the mid-infrared (MIR) spectral region is introduced. The technique is based on Fourier transform infrared (FTIR) transmission spectra measured at different temperatures. It is shown that this method can successfully determine the thermo-optic coefficient of chalcogenide glass thin films (of batch compositions Ge20Sb10Se70 at. % (atomic %) and Ge16As24Se15.5Te44.5 at. %) over the wavelength range from 2 to 25 µm. The measurement precision error is less than ± 11.5 ppm / °C over the wavelength range from 6 to 20 µm. The precision is much better than that provided by the prism minimum deviation method or an improved Swanepoel method.

5.
Sci Rep ; 9(1): 11426, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31388028

ABSTRACT

We demonstrate a maximum gain of 4.6 dB at a signal wavelength of 5.28 µm in a 4.1 µm resonantly pumped Pr3+-doped selenide-based chalcogenide glass fibre amplifier of length 109 mm, as well as a new signal excited-stated absorption (ESA) at signal wavelengths around 5.5 µm. This work to the best of our knowledge is the first experimental demonstration of gain at mid-infrared (MIR) wavelengths in a Pr3+-doped chalcogenide fibre amplifier. The signal ESA of the fibre is attributed to the transition 3H6 → (3F4, 3F3) after the pump ESA (3H5 → 3H6) at a pump wavelength of 4.1 µm, which absorbs the MIR signal at wavelengths of 5.37, 5.51 and 5.57 µm, and so spoils the amplifier's performance at these wavelengths. Thus, this signal ESA should be suppressed in a resonantly pumped Pr3+-doped selenide-based chalcogenide fibre amplifier.

6.
Beilstein J Nanotechnol ; 10: 294-304, 2019.
Article in English | MEDLINE | ID: mdl-30800568

ABSTRACT

Results from the electromagnetic modeling of the threshold conditions of hybrid plasmon modes of a laser based on a silver nanotube with an active core and covered with an active shell are presented. We study the modes of such a nanolaser that have their emission wavelengths in the visible-light range. Our analysis uses the mathematically grounded approach called the lasing eigenvalue problem (LEP) for the set of the Maxwell equations and the boundary and radiation conditions. As we study the modes exactly at the threshold, there is no need to invoke nonlinear and quantum models of lasing. Instead, we consider a laser as an open plasmonic resonator equipped with an active region. This allows us to assume that at threshold the natural-mode frequency is real-valued, according to the situation where the losses, in the metal and for the radiation, are exactly balanced with the gain in the active region. Then the emission wavelength and the associated threshold gain can be viewed as parts of two-component eigenvalues, each corresponding to a certain mode. In the configuration considered, potentially there are three types of modes that can lase: the hybrid localized surface plasmon (HLSP) modes of the metal tube, the core modes, and the shell modes. The latter two types can be kept off the visible range in thin enough configurations. Keeping this in mind, we focus on the HLSP modes and study how their threshold gain values change with variations in the geometrical parameters of the nanotube, the core, and the shell. It is found that essentially a single-mode laser can be designed on the difference-type HLSP mode of the azimuth order m = 1, shining in the orange or red spectral region. Furthermore, the threshold values of gain for similar HLSP modes of order m = 2 and 3 can be several times lower, with emission in the violet or blue parts of the spectrum.

7.
Sci Rep ; 6: 20499, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26848095

ABSTRACT

In this paper a practical case of a finite periodic Parity Time chain made of resonant dielectric cylinders is considered. The paper analyzes a more general case where PT symmetry is achieved by modulating both the real and imaginary part of the material refractive index along the resonator chain. The band-structure of the finite periodic PT resonator chains is compared to infinite chains in order to understand the complex interdependence of the Bloch phase and the amount of the gain/loss in the system that causes the PT symmetry to break. The results show that the type of the modulation along the unit cell can significantly affect the position of the threshold point of the PT system. In all cases the lowest threshold is achieved near the end of the Brillouin zone. In the case of finite PT-chains, and for a particular type of modulation, early PT symmetry breaking is observed and shown to be caused by the presence of termination states localized at the edges of the finite chain resulting in localized lasing and dissipative modes at each end of the chain.

8.
Opt Express ; 23(9): 11493-507, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969244

ABSTRACT

The paper reports on the coupling of Parity-Time (PT)-symmetric whispering gallery resonators with realistic material and gain/loss models. Response of the PT system is analyzed for the case of low and high material and gain dispersion, and also for two practical scenarios when the pump frequency is not aligned with the resonant frequency of the desired whispering gallery mode and when there is imbalance in the gain/loss profile. The results show that the presence of dispersion and frequency misalignment causes skewness in frequency bifurcation and significant reduction of the PT breaking point, respectively. Finally, we demonstrate a lasing mode operation which occurs due to an early PT-breaking by increasing loss in a PT system with unbalanced gain and loss.

9.
Opt Express ; 22(16): 19169-82, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25321003

ABSTRACT

We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr(3+)) chalcogenide fibre lasers. The 4.5um laser is assumed to have a repetition rate of 4MHz with 50ps long pulses having a peak power of 4.7kW. A thorough fibre design optimisation was conducted using measured material dispersion (As-Se/Ge-As-Se) and measured fibre loss obtained in fabricated fibre of the same materials. The loss was below 2.5dB/m in the 3.3-9.4µm region. Fibres with 8 and 10µm core diameters generated an SC out to 12.5 and 10.7µm in less than 2m of fibre when pumped with 0.75 and 1kW, respectively. Larger core fibres with 20µm core diameters for potential higher power handling generated an SC out to 10.6µm for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8-10µm band was 7.5 and 8.8mW for the 8 and 10µm fibres, respectively. For the 20µm core fibres up to 46mW was converted.

10.
Opt Lett ; 39(9): 2603-6, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24784056

ABSTRACT

We report on the impact of realistic gain and loss models on the bistable operation of nonlinear parity-time (PT) Bragg gratings. In our model we include both dispersive and saturable gain and show that levels of gain/loss saturation can have a significant impact on the bistable operation of a nonlinear PT Bragg grating based on GaAs material. The hysteresis of the nonlinear PT Bragg grating is analyzed for different levels of gain and loss and different saturation levels. We show that high saturation levels can improve the nonlinear operation by reducing the intensity at which the bistability occurs. However, when the saturation intensity is low, saturation inhibits the PT characteristics of the grating.

11.
Opt Express ; 22(4): 3959-67, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24663717

ABSTRACT

We theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (T(FWHM)=3.5ps, P0=20kW, ν(R)=30MHz, and P(avg)=2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.9-4.1µm SC at the -30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λ(ZDW)) significantly below the 4.1µm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55µm. This allows the MIR solitons in the ZBLAN fiber SC to couple into anomalous dispersion in the chalcogenide fiber and further redshift out to the fiber loss edge at around 9µm. The final 0.9-9µm SC covers over 3 octaves in the MIR with around 15mW of power converted into the 6-9µm range.

12.
Opt Lett ; 37(23): 4922-4, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202091

ABSTRACT

We report on the fabrication and optical assessment of an all-solid tellurite-glass photonic bandgap fiber. The manufacturing process via a preform drawing approach and the fiber characterization procedures are described and discussed. The fiber exhibits some minor morphological deformations that do not prevent the observation of optical confinement within the fiber by bandgap effects. The experimental fiber attenuation spectrum displays clear bandgap confinement regions whose positions are confirmed by modeling the guiding properties of the ideal geometry using a plane-wave expansion method. The model identifies the bound modes of the structure and provides confirmation of experimentally observed mode field profiles.

13.
Opt Express ; 19(22): 22176-90, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22109060

ABSTRACT

We study numerically the effect of periodicity on the plasmon-assisted scattering and absorption of visible light by infinite and finite gratings of circular silver nanowires. The infinite grating is a convenient object of analysis because of the possibility to reduce the scattering problem to one period. We use the well-established method of partial separation of variables however make an important improvement by casting the resulting matrix equation to the Fredholm second-kind type, which guarantees convergence. If the silver wires have sub-wavelength radii, then two types of resonances co-exist and may lead to enhanced reflection and absorption: the plasmon-type and the grating-type. Each type is caused by different complex poles of the field function. The low-Q plasmon poles cluster near the wavelength where dielectric function equals -1. The grating-type poles make multiplets located in close proximity of Rayleigh wavelengths, tending to them if the wires get thinner. They have high Q-factors and, if excited, display intensive near-field patterns. A similar interplay between the two types of resonances takes place for finite gratings of silver wires, the sharpness of the grating-type peak getting greater for longer gratings. By tuning carefully the grating period, one can bring together two resonances and enhance the resonant scattering of light per wire by several times.

14.
Opt Express ; 18(25): 26704-19, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21165021

ABSTRACT

The progress, and current challenges, in fabricating rare-earth-doped chalcogenide-glass fibers for developing mid-infrared (IR) fiber lasers are reviewed. For the first time a coherent explanation is forwarded for the failure to date to develop a gallium-lanthanum-sulfide glass mid-IR fiber laser. For the more covalent chalcogenide glasses, the importance of optimizing the glass host and glass processing routes in order to minimize non-radiative decay and to avoid rare earth ion clustering and glass devitrification is discussed. For the first time a new idea is explored to explain an additional method of non-radiative depopulation of the excited state in the mid-IR that has not been properly recognized before: that of impurity multiphonon relaxation. Practical characterization of candidate selenide glasses is presented. Potential applications of mid-infrared fiber lasers are suggested.


Subject(s)
Chalcogens/chemistry , Fiber Optic Technology/instrumentation , Lasers , Metals, Rare Earth/chemistry , Models, Theoretical , Refractometry/instrumentation , Computer Simulation , Computer-Aided Design , Crystallization , Equipment Design , Equipment Failure Analysis , Glass/chemistry , Infrared Rays , Miniaturization
15.
Opt Lett ; 35(21): 3634-6, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-21042374

ABSTRACT

We study the lasing eigenvalue problems for a periodic open optical resonator made of an infinite grating of circular dielectric cylinders standing in free space, in the E- and H-polarization modes. If possessing a "negative-absorption" refractive index, such cylinders model a chain of quantum wires made of the gain material under pumping. The initial-guess values for the lasing frequencies are provided by the plane-wave scattering problems. We demonstrate a new effect: the existence of specific grating eigenmodes that have a low threshold of lasing even if the wires are optically very thin.

16.
J Opt Soc Am A Opt Image Sci Vis ; 27(10): 2156-68, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20922006

ABSTRACT

This paper reports on two important issues that arise in the context of the global optimization of photonic components where large problem spaces must be investigated. The first is the implementation of a fast simulation method and associated matrix solver for assessing particular designs and the second, the strategies that a designer can adopt to control the size of the problem design space to reduce runtimes without compromising the convergence of the global optimization tool. For this study an analytical simulation method based on Mie scattering and a fast matrix solver exploiting the fast multipole method are combined with genetic algorithms (GAs). The impact of the approximations of the simulation method on the accuracy and runtime of individual design assessments and the consequent effects on the GA are also examined. An investigation of optimization strategies for controlling the design space size is conducted on two illustrative examples, namely, 60° and 90° waveguide bends based on photonic microstructures, and their effectiveness is analyzed in terms of a GA's ability to converge to the best solution within an acceptable timeframe. Finally, the paper describes some particular optimized solutions found in the course of this work.

17.
Opt Lett ; 34(24): 3773-5, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20016609

ABSTRACT

A numerical study is presented of several lowest in frequency modes in a spiral microlaser. The modes in an arbitrarily shaped active cavity are considered as solutions to the two-dimensional eigenproblem for the Muller boundary-integral equations. After discretization using the Nyström-type algorithm, the eigenvalues are found in terms of frequency and material-gain threshold.

18.
Opt Lett ; 34(8): 1234-6, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19370128

ABSTRACT

Single-mode optical rib waveguides operating at telecommunication wavelengths are successfully patterned via a hot embossing technique in a thermally evaporated chalcogenide glass thin film on a chalcogenide glass substrate. Ellipsometry is used to measure the refractive index dispersion of the pressed film (As(40)Se(60)) and substrate (Ge(17)As(18)Se(65)).

19.
J Opt Soc Am A Opt Image Sci Vis ; 25(11): 2884-92, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18978871

ABSTRACT

The lasing spectra and threshold values of material gain for the dipole-type supermodes of an active microdisk concentrically coupled with an external passive microring are investigated. TE polarized modes are treated accurately using the linear electromagnetic formalism of the 2-D lasing eigenvalue problem (LEP) with exact boundary and radiation conditions. The influence of the microring on the lasing frequencies and thresholds is studied numerically, demonstrating threshold reduction opportunities. This is explained through the analysis of the mode near-field patterns and the degree of their overlap with the active region, as suggested by the optical theorem applied to the LEP solutions.

20.
Opt Lett ; 31(7): 921-3, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16599212

ABSTRACT

Lasing modes in cyclic photonic molecules (CPMs) composed of several identical thin semiconductor microdisks in free space are studied in a linear approximation. Maxwell's equations with exact boundary conditions and the radiation condition at infinity are considered as a specific eigenvalue problem that enables one to find natural frequencies and threshold gains. It is demonstrated that careful tuning of the distance between the disks in CPMs is able to drastically reduce the lasing thresholds of the whispering-gallery modes having small azimuth indices.

SELECTION OF CITATIONS
SEARCH DETAIL
...