Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 6799184, 2022.
Article in English | MEDLINE | ID: mdl-35547359

ABSTRACT

Glaucoma is one of the leading factors of vision loss, where the people tends to lose their vision quickly. The examination of cup-to-disc ratio is considered essential in diagnosing glaucoma. It is hence regarded that the segmentation of optic disc and cup is useful in finding the ratio. In this paper, we develop an extraction and segmentation of optic disc and cup from an input eye image using modified recurrent neural networks (mRNN). The mRNN use the combination of recurrent neural network (RNN) with fully convolutional network (FCN) that exploits the intra- and interslice contexts. The FCN extracts the contents from an input image by constructing a feature map for the intra- and interslice contexts. This is carried out to extract the relevant information, where RNN concentrates more on interslice context. The simulation is conducted to test the efficacy of the model that integrates the contextual information for optimal segmentation of optical cup and disc. The results of simulation show that the proposed method mRNN is efficient in improving the rate of segmentation than the other deep learning models like Drive, STARE, MESSIDOR, ORIGA, and DIARETDB.


Subject(s)
Glaucoma , Optic Disk , Computer Simulation , Diagnostic Techniques, Ophthalmological , Glaucoma/diagnostic imaging , Humans , Neural Networks, Computer , Optic Disk/diagnostic imaging
2.
J Healthc Eng ; 2022: 1892123, 2022.
Article in English | MEDLINE | ID: mdl-35126905

ABSTRACT

Population at risk can benefit greatly from remote health monitoring because it allows for early detection and treatment. Because of recent advances in Internet-of-Things (IoT) paradigms, such monitoring systems are now available everywhere. Due to the essential nature of the patients being monitored, these systems demand a high level of quality in aspects such as availability and accuracy. In health applications, where a lot of data are accessible, deep learning algorithms have the potential to perform well. In this paper, we develop a deep learning architecture called the convolutional neural network (CNN), which we examine in this study to see if it can be implemented. The study uses the IoT system with a centralised cloud server, where it is considered as an ideal input data acquisition module. The study uses cloud computing resources by distributing CNN operations to the servers with outsourced fitness functions to be performed at the edge. The results of the simulation show that the proposed method achieves a higher rate of classifying the input instances from the data acquisition tools than other methods. From the results, it is seen that the proposed CNN achieves an average accurate rate of 99.6% on training datasets and 86.3% on testing datasets.


Subject(s)
Internet of Things , Algorithms , Cloud Computing , Delivery of Health Care , Humans , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...