Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 601, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238329

ABSTRACT

Epilepsy is a prevalent disorder involving neuronal network hyperexcitability, yet existing therapeutic strategies often fail to provide optimal patient outcomes. Chemogenetic approaches, where exogenous receptors are expressed in defined brain areas and specifically activated by selective agonists, are appealing methods to constrain overactive neuronal activity. We developed BARNI (Bradanicline- and Acetylcholine-activated Receptor for Neuronal Inhibition), an engineered channel comprised of the α7 nicotinic acetylcholine receptor ligand-binding domain coupled to an α1 glycine receptor anion pore domain. Here we demonstrate that BARNI activation by the clinical stage α7 nicotinic acetylcholine receptor-selective agonist bradanicline effectively suppressed targeted neuronal activity, and controlled both acute and chronic seizures in male mice. Our results provide evidence for the use of an inhibitory acetylcholine-based engineered channel activatable by both exogenous and endogenous agonists as a potential therapeutic approach to treating epilepsy.


Subject(s)
Epilepsy , Receptors, Nicotinic , Mice , Male , Humans , Animals , Receptors, Cholinergic , alpha7 Nicotinic Acetylcholine Receptor/genetics , Receptors, Nicotinic/genetics , Nicotinic Agonists/pharmacology , Acetylcholine/pharmacology , Seizures/genetics
3.
Cell Rep ; 36(6): 109511, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34380034

ABSTRACT

Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder that often presents with psychiatric conditions, including autism spectrum disorder (ASD). ASD is characterized by restricted, repetitive, and inflexible behaviors, which may result from abnormal activity in striatal circuits that mediate motor learning and action selection. To test whether altered striatal activity contributes to aberrant motor behaviors in the context of TSC, we conditionally deleted Tsc1 from direct or indirect pathway striatal projection neurons (dSPNs or iSPNs, respectively). We find that dSPN-specific loss of Tsc1 impairs endocannabinoid-mediated long-term depression (eCB-LTD) at cortico-dSPN synapses and strongly enhances corticostriatal synaptic drive, which is not observed in iSPNs. dSPN-Tsc1 KO, but not iSPN-Tsc1 KO, mice show enhanced motor learning, a phenotype observed in several mouse models of ASD. These findings demonstrate that dSPNs are particularly sensitive to Tsc1 loss and suggest that enhanced corticostriatal activation may contribute to altered motor behaviors in TSC.


Subject(s)
Corpus Striatum/metabolism , Endocannabinoids/metabolism , Learning , Long-Term Synaptic Depression , Motor Activity/physiology , Neural Pathways/physiology , Neurons/metabolism , Tuberous Sclerosis Complex 1 Protein/metabolism , Animals , Gene Deletion , Hypertrophy , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Knockout , Mutation/genetics , Signal Transduction , Synapses/metabolism , Synaptic Transmission , Tuberous Sclerosis Complex 1 Protein/genetics , Up-Regulation
4.
Neuroscience ; 423: 216-231, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31484046

ABSTRACT

Two issues were examined regarding the trigeminal system in larval lampreys: (1) for normal animals, double labeling was used to confirm that the trigeminal system has a topological organization; (2) following trigeminal nerve root transections, double labeling was used to test whether the topological organization of the trigeminal system is restored. First, for normal animals, Alexa 488 dextran amine applied to the medial oral hood (anterior head) labeled trigeminal motoneurons (MNs) in the ventromedial part of the trigeminal motor nuclei (nVm) and axons of trigeminal sensory neurons (SNs) in the ventromedial part of the trigeminal descending tracts (dV). Also, Texas red dextran amine (TRDA) applied to the lateral oral hood labeled trigeminal MNs in the dorsolateral nVm and sensory axons in the dorsolateral dV. These results confirm the topological organization of the trigeminal system of normal lampreys. Second, following trigeminal nerve root transections, the physical integrity of the nerves was restored during growth of trigeminal sensory and motor axons. In addition, double labeling indicated a restoration and refinement of the topological organization of the trigeminal system with increasing recovery times, but mainly for nVm. Despite the paucity of growth of trigeminal sensory axons in dV even at long recovery times (12-16 wks), a substantial percentage of experimental animals recovered trigeminal-evoked swimming responses and trigeminal-evoked synaptic responses in reticulospinal (RS) neurons. Following trigeminal nerve root injury, several mechanisms, including axonal guidance cues, probably contribute to the substantial restoration of the topological organization of the lamprey trigeminal system.


Subject(s)
Nerve Regeneration/physiology , Trigeminal Nerve Injuries/physiopathology , Trigeminal Nerve/physiology , Animals , Evoked Potentials/physiology , Histological Techniques , Lampreys , Motor Neurons/physiology , Sensory Receptor Cells/physiology , Trigeminal Nerve/anatomy & histology , Trigeminal Nerve Injuries/pathology
5.
Cell Rep ; 23(11): 3197-3208, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29898392

ABSTRACT

mTORC1 is a central signaling hub that integrates intra- and extracellular signals to regulate a variety of cellular metabolic processes. Mutations in regulators of mTORC1 lead to neurodevelopmental disorders associated with autism, which is characterized by repetitive, inflexible behaviors. These behaviors may result from alterations in striatal circuits that control motor learning and habit formation. However, the consequences of mTORC1 dysregulation on striatal neuron function are largely unknown. To investigate this, we deleted the mTORC1 negative regulator Tsc1 from identified striatonigral and striatopallidal neurons and examined how cell-autonomous upregulation of mTORC1 activity affects their morphology and physiology. We find that loss of Tsc1 increases the excitability of striatonigral, but not striatopallidal, neurons and selectively enhances corticostriatal synaptic transmission. These findings highlight the critical role of mTORC1 in regulating striatal activity in a cell type- and input-specific manner, with implications for striatonigral pathway dysfunction in neuropsychiatric disease.


Subject(s)
Corpus Striatum/metabolism , Neurons/metabolism , Tuberous Sclerosis Complex 1 Protein/metabolism , Animals , Female , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Signal Transduction , Synaptic Transmission , Tuberous Sclerosis Complex 1 Protein/genetics
6.
J Neurophysiol ; 117(1): 215-229, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27760818

ABSTRACT

Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY: In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results. Thus, after disruption of long-axon projections from RS neurons in the lamprey, descending propriospinal (PS) neurons appear to be a viable compensatory mechanism for indirect activation of spinal locomotor networks.


Subject(s)
Central Pattern Generators/pathology , Nerve Regeneration/physiology , Neurons/physiology , Proprioception/physiology , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , Action Potentials/physiology , Analysis of Variance , Animals , Biomechanical Phenomena , Computer Simulation , Disease Models, Animal , Functional Laterality/physiology , Horseradish Peroxidase/metabolism , Lampreys , Locomotion/physiology , Models, Biological , Muscle, Skeletal/physiopathology , Nerve Net/physiology , Spinal Cord Injuries/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...