Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
PLoS One ; 12(8): e0183198, 2017.
Article in English | MEDLINE | ID: mdl-28817634

ABSTRACT

Malaria, a disease endemic in many tropical and subtropical regions, is caused by infection of the erythrocyte by the apicomplexan parasite Plasmodium. Host-cell invasion is a complex process but two Plasmodium proteins, Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck protein complex (RON), play a key role. AMA1, present on the surface of the parasite, binds tightly to the RON2 component of the RON protein complex, which is inserted into the erythrocyte membrane during invasion. Blocking the AMA1-RON2 interaction with antibodies or peptides inhibits invasion, underlining its importance in the Plasmodium life cycle and as a target for therapeutic strategies. We describe the crystal structure of the complex formed between AMA1 from P. vivax (PvAMA1) and a peptide derived from the externally exposed region of P. vivax RON2 (PvRON2sp1), and of the heterocomplex formed between P. falciparum AMA1 (PfAMA1) and PvRON2sp1. Binding studies show that the affinity of PvRON2sp1 for PvAMA1 is weaker than that previously reported for the PfRON2sp1-PfAMA1 association. Moreover, while PvRON2sp1 shows strong cross-reactivity with PfAMA1, PfRON2sp1 displays no detectable interaction with PvAMA1. The structures show that the equivalent residues PvRON2-Thr2055 and PfRON2-Arg2041 largely account for this pattern of reactivity.


Subject(s)
Cross Reactions , Plasmodium falciparum/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Animals , Ligands , Protein Binding , Protozoan Proteins/metabolism
2.
Malar J ; 15: 28, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26772184

ABSTRACT

BACKGROUND: Rosetting, namely the capacity of the Plasmodium falciparum-infected red blood cells to bind uninfected RBCs, is commonly observed in African children with severe malaria. Rosetting results from specific interactions between a subset of variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins encoded by var genes, serum components and RBC receptors. Rosette formation is a redundant phenotype, as there exists more than one var gene encoding a rosette-mediating PfEMP1 in each genome and hence a diverse array of underlying interactions. Moreover, field diversity creates a large panel of rosetting-associated serotypes and studies with human immune sera indicate that surface-reacting antibodies are essentially variant-specific. To gain better insight into the interactions involved in rosetting and map surface epitopes, a panel of monoclonal antibodies (mAbs) was investigated. METHODS: Monoclonal antibodies were isolated from mice immunized with PfEMP1-VarO recombinant domains. They were characterized using ELISA and reactivity with the native PfEMP1-VarO adhesin on immunoblots of reduced and unreduced extracts, as well as SDS-extracts of Palo Alto 89F5 VarO schizonts. Functionality was assessed using inhibition of Palo Alto 89F5 VarO rosette formation and disruption of Palo Alto 89F5 VarO rosettes. Competition ELISAs were performed with biotinylated antibodies against DBL1 to identify reactivity groups. Specificity of mAbs reacting with the DBL1 adhesion domain was explored using recombinant proteins carrying mutations abolishing RBC binding or binding to heparin, a potent inhibitor of rosette formation. RESULTS: Domain-specific, surface-reacting mAbs were obtained for four individual domains (DBL1, CIDR1, DBL2, DBL4). Monoclonal antibodies reacting with DBL1 potently inhibited the formation of rosettes and disrupted Palo Alto 89F5 VarO rosettes. Most surface-reactive mAbs and all mAbs interfering with rosetting reacted on parasite immunoblots with disulfide bond-dependent PfEMP1 epitopes. Based on competition ELISA and binding to mutant DBL1 domains, two distinct binding sites for rosette-disrupting mAbs were identified in close proximity to the RBC-binding site. CONCLUSIONS: Rosette-inhibitory antibodies bind to conformation-dependent epitopes located close to the RBC-binding site and distant from the heparin-binding site. These results provide novel clues for a rational intervention strategy that targets rosetting.


Subject(s)
Antibodies, Monoclonal/metabolism , Cell Adhesion Molecules/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Enzyme-Linked Immunosorbent Assay , Mice , Plasmodium falciparum/drug effects , Protein Binding
3.
Sci Rep ; 5: 14868, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26450557

ABSTRACT

The human malaria parasite, Plasmodium falciparum, is able to evade spleen-mediated clearing from blood stream by sequestering in peripheral organs. This is due to the adhesive properties conferred by the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family exported by the parasite to the surface of infected erythrocytes. Expression of the VAR2CSA variant of PfEMP1 leads to pregnancy-associated malaria, which occurs when infected erythrocytes massively sequester in the placenta by binding to low-sulfated Chondroitin Sulfate A (CSA) present in the intervillous spaces. VAR2CSA is a 350 kDa protein that carries six Duffy-Binding Like (DBL) domains, one Cysteine-rich Inter-Domain Regions (CIDR) and several inter-domain regions. In the present paper, we report for the first time the crystal structure at 2.9 Šof a VAR2CSA double domain, DBL3X-DBL4ε, from the FCR3 strain. DBL3X and DBL4ε share a large contact interface formed by residues that are invariant or highly conserved in VAR2CSA variants, which suggests that these two central DBL domains (DBL3X-DBL4ε) contribute significantly to the structuring of the functional VAR2CSA extracellular region. We have also examined the antigenicity of peptides corresponding to exposed loop regions of the DBL4ε structure.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Placenta/immunology , Plasmodium falciparum/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Binding Sites/genetics , Binding Sites/immunology , Chondroitin Sulfates/immunology , Chondroitin Sulfates/metabolism , Crystallography, X-Ray , Erythrocytes/immunology , Erythrocytes/parasitology , Female , Host-Parasite Interactions/immunology , Humans , Immune Sera/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Models, Molecular , Molecular Sequence Data , Mutation , Placenta/metabolism , Placenta/parasitology , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Pregnancy , Protein Binding/immunology , Protein Structure, Tertiary , Rabbits , Sequence Homology, Amino Acid
4.
PLoS One ; 10(7): e0134292, 2015.
Article in English | MEDLINE | ID: mdl-26222304

ABSTRACT

Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.


Subject(s)
Adhesins, Bacterial/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Cross Reactions , Epitopes/chemistry , Epitopes/genetics , Erythrocytes/parasitology , Female , Humans , Malaria Vaccines/chemistry , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Mice , Mice, Inbred BALB C , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Rosette Formation
5.
PLoS One ; 10(4): e0123567, 2015.
Article in English | MEDLINE | ID: mdl-25886591

ABSTRACT

The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host's humoral response to AMA1.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Protozoan/chemistry , Membrane Proteins/chemistry , Plasmodium knowlesi/immunology , Protozoan Proteins/chemistry , Amino Acid Sequence , Animals , Antigens, Protozoan/immunology , Base Sequence , Crystallography, X-Ray , Membrane Proteins/immunology , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protozoan Proteins/immunology
6.
PLoS One ; 10(4): e0124400, 2015.
Article in English | MEDLINE | ID: mdl-25881166

ABSTRACT

Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1). In order to determine genetic diversity of the ama1 gene and to identify epitopes of AMA1 under strongest immune selection, the ama1 gene of 52 P. knowlesi isolates derived from human infections was sequenced. Sequence analysis of isolates from two geographically isolated regions in Sarawak showed that polymorphism in the protein is low compared to that of AMA1 of the major human malaria parasites, P. falciparum and P. vivax. Although the number of haplotypes was 27, the frequency of mutations at the majority of the polymorphic positions was low, and only six positions had a variance frequency higher than 10%. Only two positions had more than one alternative amino acid. Interestingly, three of the high-frequency polymorphic sites correspond to invariant sites in PfAMA1 or PvAMA1. Statistically significant differences in the quantity of three of the six high frequency mutations were observed between the two regions. These analyses suggest that the pkama1 gene is not under balancing selection, as observed for pfama1 and pvama1, and that the PkAMA1 protein is not a primary target for protective humoral immune responses in their reservoir macaque hosts, unlike PfAMA1 and PvAMA1 in humans. The low level of polymorphism justifies the development of a single allele PkAMA1-based vaccine.


Subject(s)
Antigens, Protozoan/genetics , Haplotypes/genetics , Malaria/genetics , Membrane Proteins/genetics , Mutation/genetics , Plasmodium knowlesi/isolation & purification , Polymorphism, Genetic/genetics , Protozoan Proteins/genetics , Selection, Genetic/genetics , Amino Acid Sequence , Humans , Malaria/parasitology , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Amino Acid
7.
PLoS One ; 9(4): e95558, 2014.
Article in English | MEDLINE | ID: mdl-24760076

ABSTRACT

Increasing evidence suggests that synaptic dysfunction is a core pathophysiological hallmark of neurodegenerative disorders. Brain-derived neurotropic factor (BDNF) is key synaptogenic molecule and targeting synaptic repair through modulation of BDNF signalling has been suggested as a potential drug discovery strategy. The development of such "synaptogenic" therapies depend on the availability of BDNF sensitive markers of synaptic function that could be utilized as biomarkers for examining target engagement or drug efficacy in humans. Here we have utilized the BDNF Val66Met genetic polymorphism to examine the effect of the polymorphism and genetic load (i.e. Met allele load) on electrophysiological (EEG) markers of synaptic activity and their structural (MRI) correlates. Sixty healthy adults were prospectively recruited into the three genetic groups (Val/Val, Val/Met, Met/Met). Subjects also underwent fMRI, tDCS/TMS, and cognitive assessments as part of a larger study. Overall, some of the EEG markers of synaptic activity and brain structure measured with MRI were the most sensitive markers of the polymorphism. Met carriers showed decreased oscillatory activity and synchrony in the neural network subserving error-processing, as measured during a flanker task (ERN); and showed increased slow-wave activity during resting. There was no evidence for a Met load effect on the EEG measures and the polymorphism had no effects on MMN and P300. Met carriers also showed reduced grey matter volume in the anterior cingulate and in the (left) prefrontal cortex. Furthermore, anterior cingulate grey matter volume, and oscillatory EEG power during the flanker task predicted subsequent behavioural adaptation, indicating a BDNF dependent link between brain structure, function and behaviour associated with error processing and monitoring. These findings suggest that EEG markers such as ERN and resting EEG could be used as BDNF sensitive functional markers in early clinical development to examine target engagement or drug related efficacy of synaptic repair therapies in humans.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Polymorphism, Genetic/genetics , Synapses/physiology , Adult , Brain/metabolism , Brain/physiology , Electroencephalography , Female , Genotype , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Methionine/genetics , Middle Aged , Neuropsychological Tests , Valine/genetics , Young Adult
8.
Int J Neuropsychopharmacol ; 17(5): 705-13, 2014 May.
Article in English | MEDLINE | ID: mdl-24405657

ABSTRACT

The brain-derived neurotropic factor (BDNF) Val66Met polymorphism has been associated with abnormalities of synaptic plasticity in animal models, and abnormalities in motor cortical plasticity have also been described in humans using transcranial direct current stimulation. No study has yet been done on plasticity in non-motor regions, and the effect of two Met alleles (i.e. 'Met dose') is not well understood. We studied the effect of the BDNF Val66Met polymorphism on the after-effects of transcranial direct current stimulation and tetanic auditory stimulation in 65 subjects (23; Val66Val, 22; Val66Met and 20; Met66Met genotypes). In the first session, motor evoked potentials (MEP) were recorded under stereotaxic guidance for 90 min after 9 min of anodal transcranial direct current stimulation (TDCS). In the second session, auditory-evoked potentials (AEP) were recorded before and after 2 min of auditory 13 Hz tetanic stimulation. There was a difference in MEP facilitation post-TDCS comparing Met carriers with non-Met carriers, with Met carriers having a modest late facilitation at 30-90 min. There was no difference in responses between Val66Met genotype and Met66Met genotype subjects. Tetanic auditory stimulation also produced late facilitation of N1-P2 AEP at 25 min, but there was no apparent effect of genetic status. This study indicates that Met66Met carriers behave like Val66Met carriers for TDCS-induced plasticity, and produce a late facilitation of MEPs. Auditory cortical plasticity was not affected by the BDNF Val66Met polymorphism. This study sheds light on the differences between auditory and motor cortical plasticity and the role of the BDNF Val66Met polymorphism.


Subject(s)
Auditory Cortex/physiology , Auditory Perception , Brain-Derived Neurotrophic Factor/genetics , Motor Cortex/physiology , Neuronal Plasticity , Polymorphism, Single Nucleotide , Acoustic Stimulation , Adult , Alleles , Auditory Perception/genetics , Electric Stimulation , Evoked Potentials, Auditory/genetics , Evoked Potentials, Motor/genetics , Female , Genotyping Techniques , Humans , Male , Middle Aged , Neuronal Plasticity/genetics , Transcranial Magnetic Stimulation , Young Adult
9.
PLoS One ; 8(11): e74133, 2013.
Article in English | MEDLINE | ID: mdl-24244264

ABSTRACT

It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe. In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results suggest that the BDNF Val66Met polymorphism does not, as previously claimed, exert an observable effect on neural systems underlying encoding of new information into episodic memory but may exert a subtle effect on the efficiency with which such information can be retrieved.


Subject(s)
Alleles , Brain-Derived Neurotrophic Factor/genetics , Memory, Episodic , Nerve Net/physiology , Polymorphism, Genetic , Adult , Brain-Derived Neurotrophic Factor/metabolism , Double-Blind Method , Female , Humans , Middle Aged
10.
J Mol Biol ; 425(10): 1697-711, 2013 May 27.
Article in English | MEDLINE | ID: mdl-23429057

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a family of adhesins of the falciparum species of the malaria parasite, is exposed on the surface of the infected erythrocyte. In general, only one PfEMP1 variant is expressed at a time but switching between variants occurs, changing both host-cell receptor specificity and serotype. The PfEMP1 variant VAR2CSA causes sequestration of infected erythrocytes in the intervillous spaces of the placenta via the glycosaminoglycan chondroitin sulfate A. This leads to pregnancy-associated malaria, which has severe consequences for the fetus and mother. The extracellular region of VAR2CSA comprises six DBL (Duffy-binding-like) domains and a single CIDR (cysteine-rich inter-domain region) domain. The C-terminal domain DBL6ε, the most polymorphic domain of VAR2CSA, has seven regions of high variability termed variable blocks (VBs). Here we have determined the crystal structure of DBL6ε from the FCR3 parasite line and have compared it with the previously determined structure of that from the 3D7 line. We found significant differences particularly in the N-terminal region, which contains the first VB (VB1). Although DBL6ε is the most variable VAR2CSA domain, DBL6ε-FCR3 and DBL6ε-3D7 react with IgG purified from immune sera of pregnant women. Furthermore, IgG purified on one domain cross-reacts with the other, confirming the presence of cross-reactive epitopes. We also examined reactivity of immune sera to the four least variable VB (VB1, VB2, VB4 and VB5) using peptides with the consensus sequence closest, in turn, to the FCR3 or 3D7 domain. These results provide new molecular insights into immune escape by parasites expressing the VAR2CSA variant.


Subject(s)
Antigens, Protozoan/chemistry , Malaria, Falciparum/immunology , Malaria, Falciparum/metabolism , Plasmodium falciparum/chemistry , Pregnancy Complications, Parasitic/immunology , Protozoan Proteins/chemistry , Amino Acid Sequence , Antigens, Protozoan/immunology , Crystallography, X-Ray , Female , Genetic Variation/immunology , Host-Parasite Interactions/immunology , Humans , Malaria, Falciparum/parasitology , Molecular Sequence Data , Placenta/chemistry , Placenta/immunology , Placenta/parasitology , Plasmodium falciparum/classification , Plasmodium falciparum/immunology , Pregnancy , Pregnancy Complications, Parasitic/metabolism , Pregnancy Complications, Parasitic/parasitology , Protein Structure, Tertiary/genetics , Protozoan Proteins/immunology
11.
Int J Neuropsychopharmacol ; 16(4): 721-31, 2013 May.
Article in English | MEDLINE | ID: mdl-22932339

ABSTRACT

Episodic memory deficits are a core feature of neurodegenerative disorders. Muscarinic M(1) receptors play a critical role in modulating learning and memory and are highly expressed in the hippocampus. We examined the effect of GSK1034702, a potent M(1) receptor allosteric agonist, on cognitive function, and in particular episodic memory, in healthy smokers using the nicotine abstinence model of cognitive dysfunction. The study utilized a randomized, double-blind, placebo-controlled, cross-over design in which 20 male nicotine abstained smokers were tested following single doses of placebo, 4 and 8 mg GSK1034702. Compared to the baseline (nicotine on-state), nicotine abstinence showed statistical significance in reducing immediate (p=0.019) and delayed (p=0.02) recall. GSK1034702 (8 mg) significantly attenuated (i.e. improved) immediate recall (p=0.014) but not delayed recall. None of the other cognitive domains was modulated by either nicotine abstinence or GSK1034702. These findings suggest that stimulating M(1) receptor mediated neurotransmission in humans with GSK1034702 improves memory encoding potentially by modulating hippocampal function. Hence, selective M(1) receptor allosteric agonists may have therapeutic benefits in disorders of impaired learning including Alzheimer's disease.


Subject(s)
Behavior, Addictive/psychology , Benzimidazoles/therapeutic use , Cognition Disorders/psychology , Memory, Episodic , Receptor, Muscarinic M1/agonists , Smoking Cessation/psychology , Adult , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Behavior, Addictive/drug therapy , Benzimidazoles/pharmacology , Cognition Disorders/drug therapy , Cross-Over Studies , Double-Blind Method , Humans , Male , Middle Aged , Nicotine , Receptor, Muscarinic M1/physiology , Smoking/psychology , Young Adult
12.
PLoS Pathog ; 8(7): e1002781, 2012.
Article in English | MEDLINE | ID: mdl-22807674

ABSTRACT

The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α1 domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α1 and NTS-DBL1α1-CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A1, weaker binding to groups A2 and B, and least binding to groups A(x) and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α1-CIDR1γ, reveals extensive contacts between the DBL1α1 and CIDR1γ and shows that the NTS-DBL1α1 hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα1. RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup.


Subject(s)
ABO Blood-Group System/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Rosette Formation , ABO Blood-Group System/immunology , Amino Acid Sequence , Antibodies, Protozoan/immunology , Binding Sites , Crystallography, X-Ray , Erythrocytes/immunology , Erythrocytes/metabolism , Humans , Immune Adherence Reaction , Malaria, Falciparum/blood , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Molecular Sequence Data , Mutagenesis, Site-Directed , Plasmodium falciparum/genetics , Plasmodium falciparum/ultrastructure , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/genetics , Protozoan Proteins/immunology
13.
PLoS Pathog ; 8(6): e1002755, 2012.
Article in English | MEDLINE | ID: mdl-22737069

ABSTRACT

Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.


Subject(s)
Antigens, Protozoan/chemistry , Host-Parasite Interactions/physiology , Membrane Proteins/chemistry , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Amino Acid Sequence , Animals , Antigens, Protozoan/metabolism , Cell Membrane/metabolism , Crystallization , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Plasmodium falciparum/metabolism , Polymorphism, Genetic , Protein Binding , Protein Structure, Quaternary , Protozoan Proteins/metabolism , Surface Plasmon Resonance
14.
PLoS Negl Trop Dis ; 5(11): e1375, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22069505

ABSTRACT

Patients with Chronic Chagas' Heart Disease possess high levels of antibodies against the carboxyl-terminal end of the ribosomal P2ß protein of Trypanosoma cruzi (TcP2ß). These antibodies, as well as the murine monoclonal antibody (mAb) 17.2, recognize the last 13 amino acids of TcP2ß (called the R13 epitope: EEEDDDMGFGLFD) and are able to cross-react with, and stimulate, the ß1 adrenergic receptor (ß1-AR). Indeed, the mAb 17.2 was able to specifically detect human ß1-AR, stably transfected into HEK cells, by flow cytometry and to induce repolarisation abnormalities and first degree atrioventricular conduction block after passive transfer to naïve mice. To study the structural basis of this cross-reactivity, we determined the crystal structure of the Fab region of the mAb 17.2 alone at 2.31 Å resolution and in complex with the R13 peptide at 1.89 Å resolution. We identified as key contact residues on R13 peptide Glu3, Asp6 and Phe9 as was previously shown by alanine scanning. Additionally, we generated a model of human ß1-AR to elucidate the interaction with anti-R13 antibodies. These data provide an understanding of the molecular basis of cross-reactive antibodies induced by chronic infection with Trypanosoma cruzi.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Protozoan/chemistry , Antibodies, Protozoan/immunology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Ribosomal Proteins/chemistry , Ribosomal Proteins/immunology , Trypanosoma cruzi/chemistry , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Protozoan/metabolism , Cross Reactions , Crystallography, X-Ray , Female , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mice , Mice, Inbred BALB C , Models, Molecular , Phosphoproteins/metabolism , Protein Binding , Protein Structure, Quaternary , Receptors, Adrenergic, beta-1/immunology , Receptors, Adrenergic, beta-1/metabolism , Ribosomal Proteins/metabolism
15.
PLoS One ; 6(5): e20270, 2011.
Article in English | MEDLINE | ID: mdl-21625526

ABSTRACT

Var2CSA, a key molecule linked with pregnancy-associated malaria (PAM), causes sequestration of Plasmodium falciparum infected erythrocytes (PEs) in the placenta by adhesion to chondroitin sulfate A (CSA). Var2CSA possesses a 300 kDa extracellular region composed of six Duffy-binding like (DBL) domains and a cysteine-rich interdomain region (CIDRpam) module. Although initial studies implicated several individual var2CSA DBL domains as important for adhesion of PEs to CSA, new studies revealed that these individual domains lack both the affinity and specificity displayed by the full-length extracellular region. Indeed, recent evidence suggests the presence of a single CSA-binding site formed by a higher-order domain organization rather than several independent binding sites located on the different domains. Here, we search for the minimal binding region within var2CSA that maintains high affinity and specificity for CSA binding, a characteristic feature of the full-length extracellular region. Accordingly, truncated recombinant var2CSA proteins comprising different domain combinations were expressed and their binding characteristics assessed against different sulfated glycosaminoglycans (GAGs). Our results indicate that the smallest region within var2CSA with similar binding properties to those of the full-length var2CSA is DBL1X-3X. We also demonstrate that inhibitory antibodies raised in rabbit against the full-length DBL1X-6ε target principally DBL3X and, to a lesser extent, DBL5ε. Taken together, our results indicate that efforts should focus on the DBL1X-3X region for developing vaccine and therapeutic strategies aimed at combating PAM.


Subject(s)
Antigens, Protozoan/metabolism , Chondroitin Sulfates/metabolism , Base Sequence , Binding Sites , Cell Line , DNA Primers , Humans , Polymerase Chain Reaction
16.
Proc Natl Acad Sci U S A ; 108(13): 5243-8, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21402930

ABSTRACT

The human malaria parasite Plasmodium falciparum can cause infected red blood cells (iRBC) to form rosettes with uninfected RBC, a phenotype associated with severe malaria. Rosetting is mediated by a subset of the Plasmodium falciparum membrane protein 1 (PfEMP1) variant adhesins expressed on the infected host-cell surface. Heparin and other sulfated oligosaccharides, however, can disrupt rosettes, suggesting that therapeutic approaches to this form of severe malaria are feasible. We present a structural and functional study of the N-terminal domain of PfEMP1 from the VarO variant comprising the N-terminal segment (NTS) and the first DBL domain (DBL1α(1)), which is directly implicated in rosetting. We demonstrate that NTS-DBL1α(1)-VarO binds to RBC and that heparin inhibits this interaction in a dose-dependent manner, thus mimicking heparin-mediated rosette disruption. We have determined the crystal structure of NTS-DBL1α(1), showing that NTS, previously thought to be a structurally independent component of PfEMP1, forms an integral part of the DBL1α domain. Using mutagenesis and docking studies, we have located the heparin-binding site, which includes NTS. NTS, unique to the DBL α-class domain, is thus an intrinsic structural and functional component of the N-terminal VarO domain. The specific interaction observed with heparin opens the way for developing antirosetting therapeutic strategies.


Subject(s)
Erythrocytes/parasitology , Heparin/metabolism , Plasmodium falciparum/metabolism , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Rosette Formation , Amino Acid Sequence , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Plasmodium falciparum/pathogenicity , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
17.
PLoS One ; 6(1): e16544, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21298021

ABSTRACT

The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and rational vaccine design. Here, we investigated the Palo Alto/VarO and IT4/R29 and 3D7/PF13_003 parasites lines. VarO and R29 form rosettes with uninfected erythrocytes, a phenotype associated with severe malaria. They express an allelic Cys2/group A NTS-DBL1α(1) PfEMP1 domain implicated in rosetting, whose 3D7 ortholog is encoded by PF13_0003. Using these three recombinant NTS-DBL1α(1) domains, we elicited antibodies in mice that were used to develop monovariant cultures by panning selection. The 3D7/PF13_0003 parasites formed rosettes, revealing a correlation between sequence identity and virulence phenotype. The antibodies cross-reacted with the allelic domains in ELISA but only minimally with the Cys4/group B/C PFL1955w NTS-DBL1α. By contrast, they were variant-specific in surface seroreactivity of the monovariant-infected red cells by FACS analysis and in rosette-disruption assays. Thus, while ELISA can differentiate serogroups, surface reactivity assays define the more restrictive serotypes. Irrespective of cumulated exposure to infection, antibodies acquired by humans living in a malaria-endemic area also displayed a variant-specific surface reactivity. Although seroprevalence exceeded 90% for each rosetting line, the kinetics of acquisition of surface-reactive antibodies differed in the younger age groups. These data indicate that humans acquire an antibody repertoire to non-overlapping serotypes within a serogroup, consistent with an antibody-driven diversification pressure at the population level. In addition, the data provide important information for vaccine design, as production of a vaccine targeting rosetting PfEMP1 adhesins will require engineering to induce variant-transcending responses or combining multiple serotypes to elicit a broad spectrum of immunity.


Subject(s)
Epitopes/immunology , Erythrocyte Membrane/immunology , Genetic Variation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Alleles , Animals , Antibodies, Protozoan/biosynthesis , Epitopes/genetics , Erythrocyte Membrane/parasitology , Immunity, Humoral/drug effects , Malaria Vaccines , Mice , Plasmodium falciparum/immunology , Protozoan Proteins/administration & dosage , Protozoan Proteins/immunology
18.
PLoS Pathog ; 7(2): e1001276, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21347343

ABSTRACT

Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.


Subject(s)
Antigens, Protozoan/metabolism , Apicomplexa/physiology , Host-Parasite Interactions/physiology , Protozoan Proteins/metabolism , Virus Internalization , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Apicomplexa/genetics , Apicomplexa/metabolism , Cells, Cultured , Chlorocebus aethiops , Connexins/metabolism , Conserved Sequence , Host-Parasite Interactions/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/physiology , Models, Biological , Models, Molecular , Parasites/genetics , Parasites/metabolism , Parasites/physiology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasma/metabolism , Toxoplasma/physiology , Vero Cells
19.
Malar J ; 9: 267, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20923548

ABSTRACT

BACKGROUND: The capacity of Plasmodium falciparum-infected erythrocytes to bind uninfected erythrocytes (rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant surface antigens PfEMP1 targeted by protective antibody responses. Analysis of the response to rosette-forming parasites and their PfEMP1 adhesive domains is essential for understanding the acquisition of protection against severe malaria. To this end, the antibody response to a rosetting variant was analysed in children recruited with severe or uncomplicated malaria or asymptomatic P. falciparum infection. METHODS: Serum was collected from Beninese children with severe malaria, uncomplicated malaria or P. falciparum asymptomatic infection (N = 65, 37 and 52, respectively) and from immune adults (N = 30) living in the area. Infected erythrocyte surface-reactive IgG, rosette disrupting antibodies and IgG to the parasite crude extract were analysed using the single variant Palo Alto VarO-infected line. IgG, IgG1 and IgG3 to PfEMP1-varO-derived NTS-DBL1α1, CIDRγ and DBL2ßC2 recombinant domains were analysed by ELISA. Antibody responses were compared in the clinical groups. Stability of the response was studied using a blood sampling collected 14 months later from asymptomatic children. RESULTS: Seroprevalence of erythrocyte surface-reactive IgG was high in adults (100%) and asymptomatic children (92.3%) but low in children with severe or uncomplicated malaria (26.1% and 37.8%, respectively). The IgG, IgG1 and IgG3 antibody responses to the varO-derived PfEMP1 domains were significantly higher in asymptomatic children than in children with clinical malaria in a multivariate analysis correcting for age and parasite density at enrolment. They were essentially stable, although levels tended to decrease with time. VarO-surface reactivity correlated positively with IgG reactivity to the rosetting domain varO-NTS-DBL1α1. None of the children sera, including those with surface-reactive antibodies possessed anti-VarO-rosetting activity, and few adults had rosette-disrupting antibodies. CONCLUSIONS: Children with severe and uncomplicated malaria had similar responses. The higher prevalence and level of VarO-reactive antibodies in asymptomatic children compared to children with malaria is consistent with a protective role for anti-VarO antibodies against clinical falciparum malaria. The mechanism of such protection seems independent of rosette-disruption, suggesting that the cytophilic properties of antibodies come into play.


Subject(s)
Antibodies, Protozoan/blood , Carrier State/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adult , Benin , Carrier State/pathology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/blood , Malaria, Falciparum/pathology , Male , Parasitology/methods
20.
Mol Biochem Parasitol ; 173(2): 115-22, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20562018

ABSTRACT

Pregnancy-associated malaria (PAM) arises from sequestration of Plasmodium falciparum-parasitized erythrocytes (PE) in the placenta, leading to chronic symptoms in the expectant mother and serious consequences for fetal development. Placental sequestration has been linked to binding of chondroitin sulphate A (CSA) by the var2CSA variant of PfEMP1 expressed on the PE surface, and a substantial body of evidence shows that the immune response to var2CSA gives an effective protection against PAM. We have expressed the var2CSA-DBL5epsilon domain, derived from a placental isolate from Senegal, as soluble product in Escherichia coli and have shown using different criteria that the recombinant protein is obtained with the native conformation. Using surface plasmon resonance techniques, we have examined binding of DBL5epsilon to placental chondroitin sulphate proteoglycan and CSA; however, the recombinant protein also binds to other sulphated oligosaccharides, with higher affinity in some cases, indicating that the single domain lacks the specificity for CSA shown by the complete extra-cellular region of var2CSA and placental parasites. Recombinant DBL5epsilon was specifically recognized by sera from malaria-exposed Senegalese women in a parity-dependent manner but by sera not from children or males from the same endemic region. Conversely, DBL5epsilon induced antibodies in mice that recognized placental isolates from Benin but not isolates from children. The presence of universal epitopes thus supports DBL5epsilon as an interesting component of var2CSA to be considered for vaccine development.


Subject(s)
Antigens, Protozoan/immunology , Placenta/parasitology , Plasmodium falciparum/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Benin , Child , Child, Preschool , Chondroitin Sulfates/metabolism , Cloning, Molecular , Escherichia coli/genetics , Female , Gene Expression , Humans , Male , Mice , Molecular Sequence Data , Plasmodium falciparum/isolation & purification , Pregnancy , Pregnancy Complications, Infectious/parasitology , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Senegal , Sequence Alignment , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...