Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745514

ABSTRACT

Resistance to rose rosette disease (RRD), a fatal disease of roses (Rosa spp.), is a high priority for rose breeding. As RRD resistance is time-consuming to phenotype, the identification of genetic markers for resistance could expedite breeding efforts. However, little is known about the genetics of RRD resistance. Therefore, we performed a quantitative trait locus (QTL) analysis on a set of inter-related diploid rose populations phenotyped for RRD resistance and identified four QTLs. Two QTLs were found in multiple years. The most consistent QTL is qRRV_TX2WSE_ch5, which explains approximately 20% and 40% of the phenotypic variation in virus quantity and severity of RRD symptoms, respectively. The second, a QTL on chromosome 1, qRRD_TX2WSE_ch1, accounts for approximately 16% of the phenotypic variation for severity. Finally, a third QTL on chromosome 3 was identified only in the multiyear analysis, and a fourth on chromosome 6 was identified in data from one year only. In addition, haplotypes associated with significant changes in virus quantity and severity were identified for qRRV_TX2WSE_ch5 and qRRD_TX2WSE_ch1. This research represents the first report of genetic determinants of resistance to RRD. In addition, marker trait associations discovered here will enable better parental selection when breeding for RRD resistance and pave the way for marker-assisted selection for RRD resistance.

2.
Nat Commun ; 12(1): 4125, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226565

ABSTRACT

Genome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence-absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the 'Pawnee' cultivar. Comparative analysis and pan-genome integration reveal substantial and likely adaptive interspecific genomic introgressions, including an over-retained haplotype introgressed from bitternut hickory into pecan breeding pedigrees. Further, by leveraging our pan-genome presence-absence and functional annotation database among genomes and within the two outbred haplotypes of the 'Lakota' genome, we identify candidate genes for pest and pathogen resistance. Combined, these analyses and resources highlight significant progress towards functional and quantitative genomics in highly diverse and outbred crops.


Subject(s)
Carya/genetics , Chromosomes , Genome, Plant , Genomics , Plant Breeding , Diploidy , Disease Resistance/genetics , Genetic Variation , Genotype , Haplotypes , Phenotype
3.
Sci Rep ; 10(1): 4642, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170172

ABSTRACT

The genome of the allotetraploid species Coffea arabica L. was sequenced to assemble independently the two component subgenomes (putatively deriving from C. canephora and C. eugenioides) and to perform a genome-wide analysis of the genetic diversity in cultivated coffee germplasm and in wild populations growing in the center of origin of the species. We assembled a total length of 1.536 Gbp, 444 Mb and 527 Mb of which were assigned to the canephora and eugenioides subgenomes, respectively, and predicted 46,562 gene models, 21,254 and 22,888 of which were assigned to the canephora and to the eugeniodes subgenome, respectively. Through a genome-wide SNP genotyping of 736 C. arabica accessions, we analyzed the genetic diversity in the species and its relationship with geographic distribution and historical records. We observed a weak population structure due to low-frequency derived alleles and highly negative values of Taijma's D, suggesting a recent and severe bottleneck, most likely resulting from a single event of polyploidization, not only for the cultivated germplasm but also for the entire species. This conclusion is strongly supported by forward simulations of mutation accumulation. However, PCA revealed a cline of genetic diversity reflecting a west-to-east geographical distribution from the center of origin in East Africa to the Arabian Peninsula. The extremely low levels of variation observed in the species, as a consequence of the polyploidization event, make the exploitation of diversity within the species for breeding purposes less interesting than in most crop species and stress the need for introgression of new variability from the diploid progenitors.


Subject(s)
Coffea/growth & development , Polymorphism, Single Nucleotide , Tetraploidy , Whole Genome Sequencing/methods , Coffea/genetics , Costa Rica , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Genome Size , Genome, Plant , Yemen
4.
Plant Cell ; 26(9): 3792-808, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25238750

ABSTRACT

Arabidopsis thaliana KORRIGAN1 (KOR1) is an integral membrane endo-ß1,4-glucanase in the trans-Golgi network and plasma membrane that is essential for cellulose biosynthesis. The extracellular domain of KOR1 contains eight N-glycosylation sites, N1 to N8, of which only N3 to N7 are highly conserved. Genetic evidence indicated that cellular defects in attachment and maturation of these N-glycans affect KOR1 function in vivo, whereas the manner by which N-glycans modulate KOR1 function remained obscure. Site-directed mutagenesis analysis of green fluorescent protein (GFP)-KOR1 expressed from its native regulatory sequences established that all eight N-glycosylation sites (N1 to N8) are used in the wild type, whereas stt3a-2 cells could only inefficiently add N-glycans to less conserved sites. GFP-KOR1 variants with a single N-glycan at nonconserved sites were less effective than those with one at a highly conserved site in rescuing the root growth phenotype of rsw2-1 (kor1 allele). When functionally compromised, GFP-KOR1 tended to accumulate at the tonoplast. GFP-KOR1Δall (without any N-glycan) exhibited partial complementation of rsw2-1; however, root growth of this line was still negatively affected by the absence of complex-type N-glycan modifications in the host plants. These results suggest that one or several additional factor(s) carrying complex N-glycans cooperate(s) with KOR1 in trans to grant proper targeting/functioning in plant cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cellulase/metabolism , Membrane Proteins/metabolism , Polysaccharides/metabolism , Amino Acid Motifs , Arabidopsis/enzymology , Cell Membrane/metabolism , Conserved Sequence , Epistasis, Genetic , Genes, Reporter , Glycosylation , Golgi Apparatus/metabolism , Green Fluorescent Proteins/metabolism , Hexosyltransferases/metabolism , Models, Biological , Models, Molecular , Mutagenesis, Site-Directed , Mutation/genetics , Protein Transport , Protoplasts/metabolism , Subcellular Fractions/metabolism , trans-Golgi Network/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...