Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
JMIR Mhealth Uhealth ; 10(9): e40576, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36103226

ABSTRACT

BACKGROUND: Persuasive technology is an umbrella term that encompasses software (eg, mobile apps) or hardware (eg, smartwatches) designed to influence users to perform preferable behavior once or on a long-term basis. Considering the ubiquitous nature of mobile devices across all socioeconomic groups, user behavior modification thrives under the personalized care that persuasive technology can offer. However, there is no guidance for developing personalized persuasive technologies based on the psychological characteristics of users. OBJECTIVE: This study examined the role that psychological characteristics play in interpreted mobile health (mHealth) screen perceived persuasiveness. In addition, this study aims to explore how users' psychological characteristics drive the perceived persuasiveness of digital health technologies in an effort to assist developers and researchers of digital health technologies by creating more engaging solutions. METHODS: An experiment was designed to evaluate how psychological characteristics (self-efficacy, health consciousness, health motivation, and the Big Five personality traits) affect the perceived persuasiveness of digital health technologies, using the persuasive system design framework. Participants (n=262) were recruited by Qualtrics International, Inc, using the web-based survey system of the XM Research Service. This experiment involved a survey-based design with a series of 25 mHealth app screens that featured the use of persuasive principles, with a focus on physical activity. Exploratory factor analysis and linear regression were used to evaluate the multifaceted needs of digital health users based on their psychological characteristics. RESULTS: The results imply that an individual user's psychological characteristics (self-efficacy, health consciousness, health motivation, and extraversion) affect interpreted mHealth screen perceived persuasiveness, and combinations of persuasive principles and psychological characteristics lead to greater perceived persuasiveness. The F test (ie, ANOVA) for model 1 was significant (F9,6540=191.806; P<.001), with an adjusted R2 of 0.208, indicating that the demographic variables explained 20.8% of the variance in perceived persuasiveness. Gender was a significant predictor, with women having higher perceived persuasiveness (P=.008) relative to men. Age was a significant predictor of perceived persuasiveness with individuals aged 40 to 59 years (P<.001) and ≥60 years (P<.001). Model 2 was significant (F13,6536=341.035; P<.001), with an adjusted R2 of 0.403, indicating that the demographic variables self-efficacy, health consciousness, health motivation, and extraversion together explained 40.3% of the variance in perceived persuasiveness. CONCLUSIONS: This study evaluates the role that psychological characteristics play in interpreted mHealth screen perceived persuasiveness. Findings indicate that self-efficacy, health consciousness, health motivation, extraversion, gender, age, and education significantly influence the perceived persuasiveness of digital health technologies. Moreover, this study showed that varying combinations of psychological characteristics and demographic variables affected the perceived persuasiveness of the primary persuasive technology category.


Subject(s)
Mobile Applications , Telemedicine , Female , Humans , Male , Motivation , Persuasive Communication , Self Efficacy
2.
J Healthc Eng ; 2021: 6633832, 2021.
Article in English | MEDLINE | ID: mdl-33968353

ABSTRACT

Recently, the incidence of hypertension has significantly increased among young adults. While aerobic exercise intervention (AEI) has long been recognized as an effective treatment, individual differences in response to AEI can seriously influence clinicians' decisions. In particular, only a few studies have been conducted to predict the efficacy of AEI on lowering blood pressure (BP) in young hypertensive patients. As such, this paper aims to explore the implications of various cardiopulmonary metabolic indicators in the field by mining patients' cardiopulmonary exercise testing (CPET) data before making treatment plans. CPET data are collected "breath by breath" by using an oxygenation analyzer attached to a mask and then divided into four phases: resting, warm-up, exercise, and recovery. To mitigate the effects of redundant information and noise in the CPET data, a sparse representation classifier based on analytic dictionary learning was designed to accurately predict the individual responsiveness to AEI. Importantly, the experimental results showed that the model presented herein performed better than the baseline method based on BP change and traditional machine learning models. Furthermore, the data from the exercise phase were found to produce the best predictions compared with the data from other phases. This study paves the way towards the customization of personalized aerobic exercise programs for young hypertensive patients.


Subject(s)
Exercise Test , Hypertension , Exercise/physiology , Exercise Therapy , Humans , Hypertension/therapy , Machine Learning , Young Adult
3.
Sci Rep ; 11(1): 10515, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006901

ABSTRACT

Acute respiratory failure (ARF) requiring mechanical ventilation, a complicating factor in sepsis and other disorders, is associated with high morbidity and mortality. Despite its severity and prevalence, treatment options are limited. In light of accumulating evidence that mitochondrial abnormalities are common in ARF, here we applied broad spectrum quantitative and semiquantitative metabolomic analyses of serum from ARF patients to detect bioenergetic dysfunction and determine its association with survival. Plasma samples from surviving and non-surviving patients (N = 15/group) were taken at day 1 and day 3 after admission to the medical intensive care unit and, in survivors, at hospital discharge. Significant differences between survivors and non-survivors (ANOVA, 5% FDR) include bioenergetically relevant intermediates of redox cofactors nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP), increased acyl-carnitines, bile acids, and decreased acyl-glycerophosphocholines. Many metabolites associated with poor outcomes are substrates of NAD(P)-dependent enzymatic processes, while alterations in NAD cofactors rely on bioavailability of dietary B-vitamins thiamine, riboflavin and pyridoxine. Changes in the efficiency of the nicotinamide-derived cofactors' biosynthetic pathways also associate with alterations in glutathione-dependent drug metabolism characterized by substantial differences observed in the acetaminophen metabolome. Based on these findings, a four-feature model developed with semi-quantitative and quantitative metabolomic results predicted patient outcomes with high accuracy (AUROC = 0.91). Collectively, this metabolomic endotype points to a close association between mitochondrial and bioenergetic dysfunction and mortality in human ARF, thus pointing to new pharmacologic targets to reduce mortality in this condition.


Subject(s)
Critical Illness , Energy Metabolism , Metabolomics , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/mortality , Acute Disease , Adult , Chromatography, High Pressure Liquid/methods , Female , Humans , Male , Mass Spectrometry/methods , Middle Aged , NAD/metabolism , NADP/metabolism , Retrospective Studies
4.
BMC Med Inform Decis Mak ; 20(Suppl 14): 297, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33323108

ABSTRACT

BACKGROUND: Medical image data, like most patient information, have a strong requirement for privacy and confidentiality. This makes transmitting medical image data, within an open network, problematic, due to the aforementioned issues, along with the dangers of data/information leakage. Possible solutions in the past have included the utilization of information-hiding and image-encryption technologies; however, these methods can cause difficulties when attempting to recover the original images. METHODS: In this work, we developed an algorithm for protecting medical image key regions. Coefficient of variation is first employed to identify key regions, a.k.a. image lesion areas; then additional areas are processed as blocks and texture complexity is analyzed. Next, our novel reversible data-hiding algorithm embeds lesion area contents into a high-texture area, after which an Arnold transformation is utilized to protect the original lesion information. After this, we use image basic information ciphertext and decryption parameters to generate a quick response (QR) code used in place of original key regions. RESULTS: The approach presented here allows for the storage (and sending) of medical image data within open network environments, while ensuring only authorized personnel are able to recover sensitive patient information (both image and meta-data) without information loss. DISCUSSION: Peak signal to noise ratio and the Structural Similarity Index measures show that the algorithm presented in this work can encrypt and restore original images without information loss. Moreover, by adjusting the threshold and the Mean Squared Error, we can control the overall quality of the image: the higher the threshold, the better the quality and vice versa. This allows the encryptor to control the amount of degradation as, at appropriate amounts, degradation aids in the protection of the image. CONCLUSIONS: As shown in the experimental results, the proposed method allows for (a) the safe transmission and storage of medical image data, (b) the full recovery (no information loss) of sensitive regions within the medical image following encryption, and (c) meta-data about the patient and image to be stored within and recovered from the public image.


Subject(s)
Algorithms , Computer Security , Confidentiality , Humans , Technology
5.
BMC Med Inform Decis Mak ; 20(Suppl 14): 298, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33323112

ABSTRACT

BACKGROUND: The breathing disorder obstructive sleep apnea syndrome (OSAS) only occurs while asleep. While polysomnography (PSG) represents the premiere standard for diagnosing OSAS, it is quite costly, complicated to use, and carries a significant delay between testing and diagnosis. METHODS: This work describes a novel architecture and algorithm designed to efficiently diagnose OSAS via the use of smart phones. In our algorithm, features are extracted from the data, specifically blood oxygen saturation as represented by SpO2. These features are used by a support vector machine (SVM) based strategy to create a classification model. The resultant SVM classification model can then be employed to diagnose OSAS. To allow remote diagnosis, we have combined a simple monitoring system with our algorithm. The system allows physiological data to be obtained from a smart phone, the data to be uploaded to the cloud for processing, and finally population of a diagnostic report sent back to the smart phone in real-time. RESULTS: Our initial evaluation of this algorithm utilizing actual patient data finds its sensitivity, accuracy, and specificity to be 87.6%, 90.2%, and 94.1%, respectively. DISCUSSION: Our architecture can monitor human physiological readings in real time and give early warning of abnormal physiological parameters. Moreover, after our evaluation, we find 5G technology offers higher bandwidth with lower delays ensuring more effective monitoring. In addition, we evaluate our algorithm utilizing real-world data; the proposed approach has high accuracy, sensitivity, and specific, demonstrating that our approach is very promising. CONCLUSIONS: Experimental results on the apnea data in University College Dublin (UCD) Database have proven the efficiency and effectiveness of our methodology. This work is a pilot project and still under development. There is no clinical validation and no support. In addition, the Internet of Things (IoT) architecture enables real-time monitoring of human physiological parameters, combined with diagnostic algorithms to provide early warning of abnormal data.


Subject(s)
Internet of Things , Sleep Apnea Syndromes , Humans , Pilot Projects , Smartphone , Support Vector Machine
6.
BMC Med Inform Decis Mak ; 19(Suppl 7): 275, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31865898

ABSTRACT

BACKGROUND: Internet of things is fast becoming the norm in everyday life, and integrating the Internet into medical treatment, which is increasing day by day, is of high utility to both clinical doctors and patients. While there are a number of different health-related problems encountered in daily life, muscle fatigue is a common problem encountered by many. METHODS: To facilitate muscle fatigue detection, a pulse width modulation (PWM) and ESP8266-based fatigue detection and recovery system is introduced in this paper to help alleviate muscle fatigue. The ESP8266 is employed as the main controller and communicator, and PWM technology is employed to achieve adaptive muscle recovery. Muscle fatigue can be detected by surface electromyography signals and monitored in real-time via a wireless network. RESULTS: With the help of the proposed system, human muscle fatigue status can be monitored in real-time, and the recovery vibration motor status can be optimized according to muscle activity state. DISCUSSION: Environmental factors had little effect on the response time and accuracy of the system, and the response time was stable between 1 and 2 s. As indicated by the consistent change of digital value, muscle fatigue was clearly diminished using this system. CONCLUSIONS: Experiments show that environmental factors have little effect on the response time and accuracy of the system. The response time is stably between 1 and 2 s, and, as indicated by the consistent change of digital value, our systems clearly diminishes muscle fatigue. Additionally, the experimental results show that the proposed system requires minimal power and is both sensitive and stable.


Subject(s)
Electromyography/instrumentation , Internet of Things , Muscle Fatigue , Adolescent , Adult , Electromyography/methods , Humans , Male , Monitoring, Physiologic , Young Adult
7.
BMC Med Inform Decis Mak ; 19(Suppl 7): 276, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31865899

ABSTRACT

BACKGROUND: The medical community uses a variety of data standards for both clinical and research reporting needs. ISO 11179 Common Data Elements (CDEs) represent one such standard that provides robust data point definitions. Another standard is the Biomedical Research Integrated Domain Group (BRIDG) model, which is a domain analysis model that provides a contextual framework for biomedical and clinical research data. Mapping the CDEs to the BRIDG model is important; in particular, it can facilitate mapping the CDEs to other standards. Unfortunately, manual mapping, which is the current method for creating the CDE mappings, is error-prone and time-consuming; this creates a significant barrier for researchers who utilize CDEs. METHODS: In this work, we developed a semi-automated algorithm to map CDEs to likely BRIDG classes. First, we extended and improved our previously developed artificial neural network (ANN) alignment algorithm. We then used a collection of 1284 CDEs with robust mappings to BRIDG classes as the gold standard to train and obtain the appropriate weights of six attributes in CDEs. Afterward, we calculated the similarity between a CDE and each BRIDG class. Finally, the algorithm produces a list of candidate BRIDG classes to which the CDE of interest may belong. RESULTS: For CDEs semantically similar to those used in training, a match rate of over 90% was achieved. For those partially similar, a match rate of 80% was obtained and for those with drastically different semantics, a match rate of up to 70% was achieved. DISCUSSION: Our semi-automated mapping process reduces the burden of domain experts. The weights are all significant in six attributes. Experimental results indicate that the availability of training data is more important than the semantic similarity of the testing data to the training data. We address the overfitting problem by selecting CDEs randomly and adjusting the ratio of training and verification samples. CONCLUSIONS: Experimental results on real-world use cases have proven the effectiveness and efficiency of our proposed methodology in mapping CDEs with BRIDG classes, both those CDEs seen before as well as new, unseen CDEs. In addition, it reduces the mapping burden and improves the mapping quality.


Subject(s)
Biomedical Research , Common Data Elements , Neoplasms , Neural Networks, Computer , Algorithms , Humans , Research Design , Semantics
8.
Methods Mol Biol ; 1617: 187-196, 2017.
Article in English | MEDLINE | ID: mdl-28540686

ABSTRACT

In order to have faith in the analysis of data, a key factor is to have confidence that the data is reliable. In the case of microRNA, reliability includes understanding the collection methods, ensuring that the analysis is appropriate, and ensuring that the data itself is accurate. A key element in ensuring data accuracy is the removal of noise. While there can be several sources of noise, a common source of noise is the batch effect, which can be defined as systematic variability in the data caused by non-biological factors. This chapter will present various techniques designed to remove variability caused by batch effects and the potential effectiveness.


Subject(s)
MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis/methods , Algorithms , Animals , Data Mining/methods , Databases, Genetic , Humans , Knowledge Bases , Reproducibility of Results , Sequence Analysis, RNA/methods , Signal-To-Noise Ratio
9.
Methods Mol Biol ; 1617: 211-224, 2017.
Article in English | MEDLINE | ID: mdl-28540688

ABSTRACT

In recent years, the role of miRNAs in post-transcriptional gene regulation has provided new insights into the understanding of several types of cancers and neurological disorders. Although miRNA research has gathered great momentum since its discovery, traditional biological methods for finding miRNA genes and targets continue to remain a huge challenge due to the laborious tasks and extensive time involved. Fortunately, advances in computational methods have yielded considerable improvements in miRNA studies. This literature review briefly discusses recent machine learning-based techniques applied in the discovery of miRNAs, prediction of miRNA targets, and inference of miRNA functions. We also discuss the limitations of how these approaches have been elucidated in previous studies.


Subject(s)
Gene Regulatory Networks , Genomics/methods , Machine Learning , MicroRNAs/genetics , RNA, Messenger/genetics , Animals , Data Mining/methods , Gene Expression Regulation , Humans
10.
Int J Data Min Bioinform ; 13(2): 141-57, 2015.
Article in English | MEDLINE | ID: mdl-26547972

ABSTRACT

Analysing and classifying sequences based on similarities and differences is a mathematical problem of escalating relevance and importance in many scientific disciplines. One of the primary challenges in applying machine learning algorithms to sequential data, such as biological sequences, is the extraction and representation of significant features from the data. To address this problem, we have recently developed a representation, entitled Multi-Layered Vector Spaces (MLVS), which is a simple mathematical model that maps sequences into a set of MLVS. We demonstrate the usefulness of the model by applying it to the problem of identifying signal peptides. MLVS feature vectors are generated from a collection of protein sequences and the resulting vectors are used to create support vector machine classifiers. Experiments show that the MLVS-based classifiers are able to outperform or perform on par with several existing methods that are specifically designed for the purpose of identifying signal peptides.


Subject(s)
Algorithms , Databases, Protein , Peptides/chemistry , Protein Sorting Signals , Sequence Analysis, Protein/methods , Support Vector Machine , Amino Acid Sequence , Data Mining/methods , Molecular Sequence Data , Pattern Recognition, Automated/methods , Sequence Alignment/methods
11.
Int J Data Min Bioinform ; 7(2): 146-65, 2013.
Article in English | MEDLINE | ID: mdl-23777173

ABSTRACT

Alzheimer's Disease (AD) is one major cause of dementia. Previous studies have indicated that the use of features derived from Positron Emission Tomography (PET) scans lead to more accurate and earlier diagnosis of AD, compared to the traditional approaches that use a combination of clinical assessments. In this study, we compare Naive Bayes (NB) with variations of Support Vector Machines (SVMs) for the automatic diagnosis of AD. 3D Stereotactic Surface Projection (3D-SSP) is utilised to extract features from PET scans. At the most detailed level, the dimensionality of the feature space is very high. Hence we evaluate the benefits of a correlation-based feature selection method to find a small number of highly relevant features; we also provide an analysis of selected features, which is generally supportive of the literature. However, we have also encountered patterns that may be new and relevant to prediction of the progression of AD.


Subject(s)
Alzheimer Disease/pathology , Imaging, Three-Dimensional/methods , Aged , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Female , Humans , Male , Positron-Emission Tomography , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...