Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 153(3): 1352-63, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22275511

ABSTRACT

In seasonal mammals, a distinct photoneuroendocrine circuit that involves the pineal hormone melatonin tightly synchronizes reproduction with seasons. In the Syrian hamster, a seasonal model in which sexual activity is inhibited by short days, we have previously shown that the potent GnRH stimulator, kisspeptin, is crucial to convey melatonin's message; however, the precise mechanisms through which melatonin affects kisspeptin remain unclear. Interestingly, rfrp gene expression in the neurons of the dorsomedial hypothalamic nucleus, a brain region in which melatonin receptors are present in the Syrian hamster, is strongly down-regulated by melatonin in short days. Because a large body of evidence now indicates that RFamide-related peptide (RFRP)-3, the product of the rfrp gene, is an inhibitor of gonadotropin secretion in various mammalian species, we sought to investigate its effect on the gonadotrophic axis in the Syrian hamster. We show that acute central injection of RFRP-3 induces c-Fos expression in GnRH neurons and increases LH, FSH, and testosterone secretion. Moreover, chronic central administration of RFRP-3 restores testicular activity and Kiss1 levels in the arcuate nucleus of hamsters despite persisting photoinhibitory conditions. By contrast RFRP-3 does not have a hypophysiotrophic effect. Overall, these findings demonstrate that, in the male Syrian hamster, RFRP-3 exerts a stimulatory effect on the reproductive axis, most likely via hypothalamic targets. This places RFRP-3 in a decisive position between the melatonergic message and Kiss1 seasonal regulation. Additionally, our data suggest for the first time that the function of this peptide depends on the species and the physiological status of the animal model.


Subject(s)
Gene Expression Regulation , Gonadotropins/metabolism , Neuropeptides/biosynthesis , Animals , Cricetinae , Follicle Stimulating Hormone/metabolism , Kisspeptins/chemistry , Luteinizing Hormone/metabolism , Male , Melatonin/metabolism , Mesocricetus , Neurons/metabolism , Neuropeptides/chemistry , Peptides/chemistry , Proto-Oncogene Proteins c-fos/metabolism , Rats , Testosterone/metabolism
2.
Endocrinology ; 152(9): 3396-408, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21712362

ABSTRACT

Kiss1 neurons have recently emerged as a putative conduit for the metabolic gating of reproduction, with leptin being a regulator of hypothalamic Kiss1 expression. Early perturbations of the nutritional status are known to predispose to different metabolic disorders later in life and to alter the timing of puberty; however, the potential underlying mechanisms remain poorly defined. Here we report how changes in the pattern of postnatal feeding affect the onset of puberty and evaluate key hormonal and neuropeptide [Kiss1/kisspeptin (Kp)] alterations linked to these early nutritional manipulations. Female rats were raised in litters of different sizes: small (four pups per dam: overfeeding), normal (12 pups per dam), and large litters (20 pups per litter: underfeeding). Postnatal overfeeding resulted in persistently increased body weight and earlier age of vaginal opening, as an external sign of puberty, together with higher levels of leptin and hypothalamic Kiss1 mRNA. Conversely, postnatal underfeeding caused a persistent reduction in body weight, lower ovarian and uterus weights, and delayed vaginal opening, changes that were paralleled by a decrease in leptin and Kiss1 mRNA levels. Kisspeptin-52 immunoreactivity (Kp-IR) in the hypothalamus displayed similar patterns, with lower numbers of Kp-IR neurons in the arcuate nucleus of postnatally underfed animals, and a trend for increased Kp-positive fibers in the periventricular area of early overfed rats. Yet, gonadotropin responses to Kp at puberty were similar in all groups, except for enhanced responsiveness to low doses of Kp-10 in postnatally underfed rats. In conclusion, our data document that the timing of puberty is sensitive to both overfeeding and subnutrition during early (postnatal) periods and suggest that alterations in hypothalamic expression of Kiss1/kisspeptin may underlie at least part of such programming phenomenon.


Subject(s)
Hypothalamus/metabolism , Maternal Behavior/physiology , Proteins/metabolism , Sexual Maturation/physiology , Animals , Animals, Newborn , Body Weight/physiology , Female , Kisspeptins , Leptin/blood , Luteinizing Hormone/blood , Neurons/metabolism , Rats , Rats, Wistar
3.
Brain Res ; 1364: 129-38, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-20800054

ABSTRACT

Body energy reserves and metabolic state are relevant modifiers of puberty onset and fertility; forms of metabolic stress ranging from persistent energy insufficiency to morbid obesity are frequently linked to reproductive disorders. The mechanisms for such a close connection between energy balance and reproduction have been the subject of considerable attention; however, our understanding of the neurobiological basis for this phenomenon is still incomplete. In mid 1990s, the adipose-hormone, leptin, was proven as an essential signal for transmitting metabolic information onto the centers governing puberty and reproduction; yet, the ultimate mode of action of leptin on GnRH neurons has remained contentious for years. More recently, kisspeptins, a family of neuropeptides encoded by the Kiss1 gene, have emerged as conduits for the metabolic regulation of reproduction and putative effectors of leptin actions on GnRH neurons. This review recapitulates the experimental evidence obtained to date, mostly in laboratory rodents, supporting the function of kisspeptins in bridging energy balance and reproduction, with special emphasis on recent developments in this field, such as the recognition of mTOR (mammalian target of rapamycin) and Crtc1 (Creb1-regulated transcription coactivator-1) as putative mediators for leptin regulation of Kiss1 expression, as well as the identification of other potential metabolic modulators of kisspeptin signaling, such as ghrelin, neuropeptide Y (NPY) and melanin-concentrating hormone (MCH).


Subject(s)
Energy Metabolism/physiology , Homeostasis/physiology , Reproduction/physiology , Tumor Suppressor Proteins/physiology , Animals , Fertility/physiology , Humans , Kisspeptins , Leptin/physiology , Puberty/physiology , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics
4.
Peptides ; 31(2): 275-83, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19944729

ABSTRACT

Kisspeptins, derived from the Kiss1 gene play a central role in activation of the hypothalamo-pituitary gonadal (HPG) axis via stimulation of GnRH neurons. Both Kiss1 and Kiss1R (receptor) mRNA levels are found to be low in pre-pubertal rats, but whether an increase in kisspeptin and/or its receptor is the primary component in the initiation of puberty and where in the hypothalamus regulation of the kisspeptin/Kiss1R system occurs is unresolved. Using immunohistochemistry and in situ hybridization, we analyzed the level of Kiss1 mRNA and kisspeptin-immunoreactivity in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus of male rats along pubertal development. Neurons expressing Kiss1 mRNA were first detected at PND15, but increased significantly around puberty, and declined again in the adult rat. While virtually no immunoreactive cell bodies were detectable in the AVPV at any age, numerous kisspeptin-positive neurons in the arcuate nucleus were detected in the adult rat. Increasing doses of kisspeptin-54 given peripherally to male rats at PND15, 30, 45, and 60 evoked roughly similar effects, as revealed by the induction of c-Fos in the pituitary and secretion of LH and testosterone. These results show that both Kiss1 mRNA and the peptide increase in arcuate nucleus along pubertal maturation. Since kisspeptin signaling is potentially functional, even for peripheral activation, and well before the kisspeptin neuronal system is fully matured, our data support that the regulation of kisspeptin synthesis and release are key events in puberty onset in the male rat.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Nervous System/growth & development , Neurons/metabolism , Proteins/metabolism , Aging , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/growth & development , Arcuate Nucleus of Hypothalamus/metabolism , Dose-Response Relationship, Drug , Gene Expression/drug effects , Gene Expression/genetics , Kisspeptins , Luteinizing Hormone/blood , Male , Nervous System/cytology , Nervous System/metabolism , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/metabolism , Proteins/genetics , Proteins/pharmacology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Testosterone/blood , Thalamic Nuclei/cytology , Thalamic Nuclei/metabolism
5.
Regul Pept ; 152(1-3): 95-100, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-18940206

ABSTRACT

Kisspeptins are structurally closely related peptides derived from the Kiss1 gene that have been demonstrated to stimulate the hypothalamo-pituitary gonadal axis. The natural peptide products derived from post-translational processing of the kisspeptin precursor have not been elucidated. We examined the acute effect on serum levels of free testosterone in the adult male mouse after systemic administration of kisspeptins with different lengths of both human and mouse origin. Mouse kisspeptin-10 and -52 dose-dependently increased serum testosterone, and both peptides showed similar potency and efficacy. Human kisspeptin-10 and kisspeptin-54 evoked robust increase in serum testosterone, with the same potency as for mouse kisspeptins. Other members of the RFRP family of peptides, i.e. RFRP-1 and -3 were inactive. Time-course experiments revealed that the longer forms had a slower onset of action, and the long human form also a more prolonged effect. The effect of the peripherally administered mouse kisspeptin-10 could be totally blocked by the GnRH antagonist acyline. Finally, peripherally administered mouse kisspeptin-10 had no effect on Fos induction in GnRH cells. These data show that all peptides tested are active and supports the concept that their effect is mediated by a target upstream of the pituitary, such as the median eminence.


Subject(s)
Tumor Suppressor Proteins/administration & dosage , Animals , Humans , Kisspeptins , Male , Mice , Mice, Inbred Strains , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...