Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 011137, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866595

ABSTRACT

We continue the study of a particle (atom, molecule) undergoing an unbiased random walk on the Sierpinski gasket, and obtain for the gasket and tower the eigenvalue spectrum of the associated stochastic master equation. Analytic expressions for recurrence relations among the eigenvalues are derived. The recurrence relations obtained are compared with those determined for two Euclidean lattices, the closed chain with an absorbing site and a finite chain with an absorbing site at one end. We check and confirm the internal consistency between the smallest eigenvalue and the mean walklength in each of the cases studied. Attention is drawn to the relevance of the results obtained to a problem of electron transfer in proteins.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 1): 011414, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16486147

ABSTRACT

To understand the importance of confinement and the influence of translational degrees of freedom on aggregation of dipolar colloidal particles, we calculate numerically-exact values for the mean encounter time for two nonspherically symmetric molecules to form a two-molecule cluster, regarded here as a precursor to aggregation. A lattice model is formulated in which the asymmetry of the molecules is accounted for by representing each as a "dimer" in the sense that each molecule is specified to occupy two adjacent lattice sites. The two dimers undergo simultaneous translation, and the mean times for their encounter are determined. Exact numerical results are obtained via application of the theory of finite Markov processes. The results allow one to examine in a detailed way the interplay among such factors as geometrical confinement, system size, translational motion, and specific orientational effects in influencing the aggregation event. The results are compared with previously reported theoretical predictions and experiments on the behavior of dipolar colloidal particles in the presence of an applied magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL
...