Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 68(12): 2534-44, 2013.
Article in English | MEDLINE | ID: mdl-24355838

ABSTRACT

Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement, which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be greatly improved with a two-phase flow (sludge-air) or higher liquid cross-flow velocities. However, the optimization process of these systems is complex and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop and optimize these systems.


Subject(s)
Bioreactors , Hydrodynamics , Membranes, Artificial , Models, Theoretical , Water Purification , Bioreactors/standards , Equipment Design , Kinetics , Shear Strength , Stress, Mechanical , Surface Properties , Water Purification/instrumentation , Water Purification/methods
2.
Water Res ; 47(2): 463-82, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23219387

ABSTRACT

Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtration). It therefore is an important property related to process performance, including process economics. To account for this, rheological behaviour is being included in process design, necessitating its measurement. However, measurements and corresponding protocols in literature are quite diverse, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have frequently been used to build viscosity models. However, this is not that straightforward and a lot of errors can be detected with respect to good modelling practice, including fair model selection criteria, qualitative parameter estimations and proper model validation. These important steps are however recurrently violated, severely affecting the model reliability and predictive power. This is illustrated with several examples. In conclusion, dedicated research is required to improve the rheological measurements and the models derived from them. At this moment, there is no guidance with respect to proper rheological measurements. Moreover, the rheological models are not very trustworthy and remain very "black box". More insight in the physical background needs to be gained. A model-based approach with dedicated experimental data collection is the key to address this.


Subject(s)
Models, Biological , Rheology/methods , Sewage/chemistry , Bioreactors/microbiology , Bioreactors/parasitology , Reproducibility of Results , Rheology/instrumentation , Rheology/trends , Sewage/microbiology , Sewage/parasitology , Viscosity , Waste Management/methods
3.
Water Sci Technol ; 66(11): 2318-27, 2012.
Article in English | MEDLINE | ID: mdl-23032760

ABSTRACT

Fouling is the main bottleneck of the widespread use of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid cross-flow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of, for example, impellers. Validation of the CFD (computational fluid dynamics) model was made against laser Doppler anemometry (LDA) tangential velocity measurements (error less than 8%) using water as a fluid. The shear stress over the membrane surface was inferred from the CFD simulations for water. However, activated sludge (AS) is a non-Newtonian liquid, for which the CFD model was modified incorporating the non-Newtonian behaviour of AS. Shear stress and area-weighted average shear stress relationships were made giving error less that 8% compared with the CFD results. An empirical relationship for the area-weighted average shear stress was developed for water and AS as a function of the angular velocity and the total suspended solids concentration. These relationships can be linked to the energy consumption of this type of systems.


Subject(s)
Bioreactors , Hydrodynamics , Models, Theoretical , Biofouling , Stress, Mechanical
4.
Water Sci Technol ; 65(11): 2061-70, 2012.
Article in English | MEDLINE | ID: mdl-22592479

ABSTRACT

Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment for effective solids-liquid separation. However, a common problem encountered with MBR systems is fouling of the membrane resulting in frequent membrane cleaning and replacement which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be improved by understanding the shear stress over the membrane surface. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the shear stress in an MBR. Nevertheless, proper experimental validation is required to validate CFD simulation. In this work experimental measurements of shear stress induced by impellers at a membrane surface were made with an electrochemical approach and the results were used to validate CFD simulations. As good results were obtained with the CFD model (<9% error), it was extrapolated to include the non-Newtonian behaviour of activated sludge.


Subject(s)
Bioreactors , Sewage , Computer Simulation , Membranes, Artificial , Models, Theoretical , Stress, Mechanical , Water Movements
5.
Water Sci Technol ; 62(3): 736-42, 2010.
Article in English | MEDLINE | ID: mdl-20706022

ABSTRACT

The paper presents results from an experimental and numerical study of flows and transport of primarily particle bound pollutants in highway wet detention ponds. The study presented here is part of a general investigation on road runoff and pollution in respect to wet detention ponds. The objective is to evaluate the quality of long term simulation based on historical rains series of the pollutant discharges from roads and highways. A three-dimensional hydrodynamic and mud transport model is used for the investigation. The transport model has been calibrated and validated on e.g. experiments in a 30 m long concrete channel with width of 0.8 m and a water depth of approximately 0.8 m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With a fairly good agreement with measurements, modelling of hydrodynamics, transport of dissolved pollutants and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account.


Subject(s)
Geologic Sediments/chemistry , Models, Theoretical , Water Pollutants , Water/chemistry , Water Pollution/prevention & control
6.
Water Sci Technol ; 57(11): 1713-20, 2008.
Article in English | MEDLINE | ID: mdl-18547921

ABSTRACT

The paper presents results from an experimental and numerical study of wind-induced flows and transportation patterns in highway wet detention ponds. The study presented here is part of a general investigation on road runoff and pollution in respect to wet detention ponds. The objective is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress with the situation of a "real" spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non-uniform wind field distributions are not significant to this study.


Subject(s)
Rain , Water Pollutants, Chemical/analysis , Wind , Models, Theoretical , Motor Vehicles , Time Factors , Urbanization , Water Pollution, Chemical , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...