Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels ; 10: 188, 2017.
Article in English | MEDLINE | ID: mdl-28725268

ABSTRACT

BACKGROUND: Microalgal triglycerides (TAGs) hold great promise as sustainable feedstock for commodity industries. However, to determine research priorities and support business decisions, solid techno-economic studies are essential. Here, we present a techno-economic analysis of two-step TAG production (growth reactors are operated in continuous mode such that multiple batch-operated stress reactors are inoculated and harvested sequentially) for a 100-ha plant in southern Spain using vertically stacked tubular photobioreactors. The base case is established with outdoor pilot-scale data and based on current process technology. RESULTS: For the base case, production costs of 6.7 € per kg of biomass containing 24% TAG (w/w) were found. Several scenarios with reduced production costs were then presented based on the latest biological and technological advances. For instance, much effort should focus on increasing the photosynthetic efficiency during the stress and growth phases, as this is the most influential parameter on production costs (30 and 14% cost reduction from base case). Next, biological and technological solutions should be implemented for a reduction in cooling requirements (10 and 4.5% cost reduction from base case when active cooling is avoided and cooling setpoint is increased, respectively). When implementing all the suggested improvements, production costs can be decreased to 3.3 € per kg of biomass containing 60% TAG (w/w) within the next 8 years. CONCLUSIONS: With our techno-economic analysis, we indicated a roadmap for a substantial cost reduction. However, microalgal TAGs are not yet cost efficient when compared to their present market value. Cost-competiveness strictly relies on the valorization of the whole biomass components and on cheaper PBR designs (e.g. plastic film flat panels). In particular, further research should focus on the development and commercialization of PBRs where active cooling is avoided and stable operating temperatures are maintained by the water basin in which the reactor is placed.

2.
J Appl Phycol ; 28(6): 3167-3177, 2016.
Article in English | MEDLINE | ID: mdl-28035172

ABSTRACT

Microalgal triglycerides (TAGs) represent a sustainable feedstock for food, chemical and biofuel industries. The operational strategy (batch, semi-continuous, continuous cultivations) has an impact on the TAG productivity. In this study, semi-continuous (i.e. with fixed harvesting frequency) and batch cultivations were compared on TAG production both at lab-scale and in outdoor cultivations. At lab-scale, the semi-continuous TAG productivity was highest for a cycle time of 2 days (SC1; 0.21 g L-1 day-1) and similar to the maximum obtained with the batch (optimal harvest time; 0.23 g L-1 day-1). Although TAG content was lower for SC1 (22 %) than for the batch (35 %), higher biomass productivities were obtained with SC1. Outdoors, semi-continuous cultivations were subjected to a lower degree of stress (i.e. higher amount of nitrogen present in the system relative to the given irradiance) compared to lab-scale. This yielded low and similar TAG contents (10-13 %) in the different semi-continuous runs that were outdone by the batch on both TAG content (15-25 %) and productivity (batch, 0.97-2.46 g m-2 day-1; semi-continuous, 0.35-0.85 g m-2 day-1). The lab-scale experiments showed that semi-continuous strategies, besides leading to similar TAG productivities compared to the batch, could make TAG production cost effective by valorising also non-TAG compounds. However, optimization of outdoor semi-continuous cultivations is still required. For instance, the nitrogen supply and the harvest frequency should be adjusted on the total irradiance. Additionally, future research should focus on recovery metabolism upon nitrogen resupply.

3.
Biotechnol Biofuels ; 9: 64, 2016.
Article in English | MEDLINE | ID: mdl-26985237

ABSTRACT

BACKGROUND: For a commercially feasible microalgal triglyceride (TAG) production, high TAG productivities are required. The operational strategy affects TAG productivity but a systematic comparison between different strategies is lacking. For this, physiological responses of Nannochloropsis sp. to nitrogen (N) starvation and N-rich medium replenishment were studied in lab-scale batch and repeated-batch (part of the culture is periodically harvested and N-rich medium is re-supplied) cultivations under continuous light, and condensed into a mechanistic model. RESULTS: The model, which successfully described both strategies, was used to identify potential improvements for both batch and repeated-batch and compare the two strategies on optimized TAG yields on light (amount of TAGs produced per mol of supplied PAR photons). TAG yields on light, for batch, from 0.12 (base case at high light) to 0.49 g molph (-1) (at low light and with improved strain) and, for repeated-batch, from 0.07 (base case at high light) to 0.39 g molph (-1) (at low light with improved strain and optimized repeated-batch settings). The base case yields are in line with the yields observed in current state-of-the-art outdoor TAG production. CONCLUSIONS: For continuous light, an optimized batch process will always result in higher TAG yield on light compared to an optimized repeated-batch process. This is mainly because repeated-batch cycles start with N-starved cells. Their reduced photosynthetic capacity leads to inefficient light use during the regrowth phase which results in lower overall TAG yields compared to a batch process.

4.
Sci Rep ; 5: 18206, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26658351

ABSTRACT

This study explores the effect of rearing environment on water bacterial communities (BC) and the association with those present in the gut of Nile tilapia larvae (Oreochromis niloticus, Linnaeus) grown in either recirculating or active suspension systems. 454 pyrosequencing of PCR-amplified 16S rRNA gene fragments was applied to characterize the composition of water, feed and gut bacteria communities. Observed changes in water BC over time and differences in water BCs between systems were highly correlated with corresponding water physico-chemical properties. Differences in gut bacterial communities during larval development were correlated with differences in water communities between systems. The correlation of feed BC with those in the gut was minor compared to that between gut and water, reflected by the fact that 4 to 43 times more OTUs were shared between water and gut than between gut and feed BC. Shared OTUs between water and gut suggest a successful transfer of microorganisms from water into the gut, and give insight about the niche and ecological adaptability of water microorganisms inside the gut. These findings suggest that steering of gut microbial communities could be possible through water microbial management derived by the design and functionality of the rearing system.


Subject(s)
Gastrointestinal Microbiome , Tilapia , Animal Feed , Animals , Bacteria , Biodiversity , Larva , Tilapia/classification , Tilapia/genetics , Water , Water Microbiology
5.
Biotechnol Biofuels ; 8: 100, 2015.
Article in English | MEDLINE | ID: mdl-26175799

ABSTRACT

BACKGROUND: Microalgal triacylglycerides (TAGs) are a promising sustainable feedstock for the biofuel, chemical and food industry. However, industrial production of microalgal products for commodity markets is not yet economically viable, largely because of low microalgal productivity. The latter is strictly dependent on initial-biomass-specific (IBS) light availability (i.e. ratio of light impinging on reactor ground area divided by initial biomass concentration per ground area). This study investigates the effect of IBS-light availability on batch TAG production for Nannochloropsis sp. cultivated in two outdoor tubular reactors (i.e. vertical and horizontal) at different initial biomass concentrations for the TAG accumulation phase, during two distinct seasons (i.e. high and low light conditions). RESULTS: Increasing IBS-light availability led to both a higher IBS-TAG production rate and TAG content at the end of the batch, whereas biomass yield on light decreased. As a result, an optimum IBS-light availability was determined for the TAG productivity obtained at the end of the batch and several guidelines could be established. The vertical reactor (VR) should be operated at an initial biomass concentration of 1.5 g L(-1) to achieve high TAG productivities (1.9 and 3.2 g m(-2) day(-1) under low and high light, respectively). Instead, the horizontal reactor (HR) should be operated at 2.5 g L(-1) under high light (2.6 g m(-2) day(-1)), and at 1.5 g L(-1) under low light (1.4 g m(-2) day(-1)). CONCLUSIONS: From this study, the great importance of IBS-light availability on TAG production can be deduced. Although maintaining high light availabilities in the reactor is key to reach high TAG contents at the end of the batch, considerable losses in TAG productivity were observed for the two reactors regardless of light condition, when not operated at optimal initial biomass concentrations (15-40% for VR and 30-60% for HR).

6.
Appl Microbiol Biotechnol ; 97(4): 1523-32, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23001055

ABSTRACT

As a result of mixing and light attenuation in a photobioreactor (PBR), microalgae experience light/dark (L/D) cycles that can enhance PBR efficiency. One parameter which characterizes L/D cycles is the duty cycle; it determines the time fraction algae spend in the light. The objective of this study was to determine the influence of different duty cycles on oxygen yield on absorbed light energy and photosynthetic oxygen evolution. Net oxygen evolution of Chlamydomonas reinhardtii was measured for four duty cycles (0.05, 0.1, 0.2, and 0.5) in a biological oxygen monitor (BOM). Oversaturating light flashes were applied in a square-wave fashion with four flash frequencies (5, 10, 50, and 100 Hz). Algae were precultivated in a turbidostat and acclimated to a low photon flux density (PFD). A photosynthesis-irradiance (PI) curve was measured under continuous illumination and used to calculate the net oxygen yield, which was maximal between a PFD of 100 and 200 µmol m⁻² s⁻¹. Net oxygen yield under flashing light was duty cycle-dependent: the highest yield was observed at a duty cycle of 0.1 (i.e., time-averaged PFD of 115 µmol m⁻² s⁻¹). At lower duty cycles, maintenance respiration reduced net oxygen yield. At higher duty cycles, photon absorption rate exceeded the maximal photon utilization rate, and, as a result, surplus light energy was dissipated which led to a reduction in net oxygen yield. This behavior was identical with the observation under continuous light. Based on these data, the optimal balance between oxygen yield and production rate can be determined to maximize PBR productivity.


Subject(s)
Biological Evolution , Chlamydomonas reinhardtii/metabolism , Microalgae/metabolism , Oxygen/metabolism , Photosynthesis , Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/radiation effects , Kinetics , Light , Microalgae/chemistry , Microalgae/genetics , Microalgae/radiation effects , Oxygen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...