Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 112 ( Pt 12): 1925-36, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10341211

ABSTRACT

We have characterized precisely the cytokeratin expression pattern of sweat gland myoepithelial cells and have identified conditions for propagating this cell type and modulating its differentiation in culture. Rare, unstratified epithelioid colonies were identified in cultures initiated from several specimens of full-thickness human skin. These cells divided rapidly in medium containing serum, epidermal growth factor (EGF), and hydrocortisone, and maintained a closely packed, epithelioid morphology when co-cultured with 3T3 feeder cells. Immunocytochemical and immunoblot analysis disclosed that the cells differed from keratinocytes in that they were E-cadherin-negative, vimentin-positive, and expressed an unusual set of cytokeratins, K5, K7, K14, and K17. When subcultured without feeder cells, they converted reversibly to a spindle morphology and ceased K5 and K14 expression. Under these conditions, EGF deprivation induced flattening, growth arrest, and expression of alpha-smooth muscle actin ((&agr;)-sma). Coexpression of keratins and alpha-sma is a hallmark of myoepithelial cells, a constituent of secretory glands. Immunostaining of skin sections revealed that only sweat gland myoepithelial cells expressed the same pattern of keratins and alpha-sma and lack of E-cadherin as the cell type we had cultured. Interestingly, our immunocytochemical analysis of ndk, a skin-derived cell line of uncertain identity, suggests that this line is of myoepithelial origin. Earlier immunohistochemical studies by others had found myoepithelial cells to be K7-negative. We tested five K7-specific antibodies that can recognize this protein in western blots and in the assembled keratin filaments of mesothelial cells. Three of these antibodies did not recognize the K7 present in myoepithelial cell filaments or in HeLa cell filaments, indicating that some K7 epitopes are masked when K7 pairs with K17 instead of with its usual keratin filament partner, K19.


Subject(s)
Keratins/analysis , Mesoderm/cytology , Sweat Glands/cytology , Biopsy , Cell Differentiation/physiology , Cells, Cultured , Epithelial Cells/physiology , Humans , Immunohistochemistry , Keratinocytes/physiology , Organ Culture Techniques , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...