Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 3051-3062, 2020 12.
Article in English | MEDLINE | ID: mdl-33211662

ABSTRACT

Motor Imagery (MI)-based Brain Computer Interface (BCI) system is a potential technology for active neurorehabilitation of stroke patients by complementing the conventional passive rehabilitation methods. Research to date mainly focused on classifying left vs. right hand/foot MI of stroke patients. Though a very few studies have reported decoding imagined hand movement directions using electroencephalogram (EEG)-based BCI, the experiments were conducted on healthy subjects. Our work analyzes MI-based brain cortical activity from EEG signals and decodes the imagined hand movement directions in stroke patients. The decoded direction (left vs. right) of hand movement imagination is used to provide control commands to a motorized arm support on which patient's affected (paralyzed) arm is placed. This enables the patient to move his/her stroke-affected hand towards the intended (imagined) direction that aids neuroplasticity in the brain. The synchronization measure called Phase Locking Value (PLV), extracted from EEG, is the neuronal signature used to decode the directional movement of the MI task. Event-related desynchronization/synchronization (ERD/ERS) analysis on Mu and Beta frequency bands of EEG is done to select the time bin corresponding to the MI task. The dissimilarities between the two directions of MI tasks are identified by selecting the most significant channel pairs that provided maximum difference in PLV features. The training protocol has an initial calibration session followed by a feedback session with 50 trials of MI task in each session. The feedback session extracts PLV features corresponding to most significant channel pairs which are identified in the calibration session and is used to predict the direction of MI task in left/right direction. An average MI direction classification accuracy of 74.44% is obtained in performing the training protocol and 68.63% from the prediction protocol during feedback session on 16 stroke patients.


Subject(s)
Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Electroencephalography , Female , Hand , Humans , Imagination , Male , Movement
2.
J Integr Neurosci ; 17(1): 43-51, 2018.
Article in English | MEDLINE | ID: mdl-29376882

ABSTRACT

The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.


Subject(s)
Analgesics/pharmacology , Brain Waves/drug effects , Brain/drug effects , Fuzzy Logic , Models, Neurological , Adult , Aged , Dose-Response Relationship, Drug , Electroencephalography , Female , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted , Statistics, Nonparametric , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...