Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Biomolecules ; 14(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38785951

ABSTRACT

This study aimed to identify potential BCL-2 small molecule inhibitors using deep neural networks (DNN) and random forest (RF), algorithms as well as molecular docking and molecular dynamics (MD) simulations to screen a library of small molecules. The RF model classified 61% (2355/3867) of molecules as 'Active'. Further analysis through molecular docking with Vina identified CHEMBL3940231, CHEMBL3938023, and CHEMBL3947358 as top-scored small molecules with docking scores of -11, -10.9, and 10.8 kcal/mol, respectively. MD simulations validated these compounds' stability and binding affinity to the BCL2 protein.


Subject(s)
Machine Learning , Molecular Docking Simulation , Molecular Dynamics Simulation , Proto-Oncogene Proteins c-bcl-2 , Small Molecule Libraries , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Humans , Protein Binding
2.
PeerJ ; 12: e16762, 2024.
Article in English | MEDLINE | ID: mdl-38274328

ABSTRACT

Background: Global prevalence of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease is increasing gradually, whereas approvals of successful therapeutics for central nervous system disorders are inadequate. Accumulating evidence suggests pivotal roles of the receptor-interacting serine/threonine-protein kinase 1 (RIPK1) in modulating neuroinflammation and necroptosis. Discoveries of potent small molecule inhibitors for RIPK1 with favorable pharmacokinetic properties could thus address the unmet medical needs in treating neurodegeneration. Methods: In a structure-based virtual screening, we performed site-specific molecular docking of 4,858 flavonoids against the kinase domain of RIPK1 using AutoDock Vina. We predicted physicochemical descriptors of the top ligands using the SwissADME webserver. Binding interactions of the best ligands and the reference ligand L8D were validated using replicated 500-ns Gromacs molecular dynamics simulations and free energy calculations. Results: From Vina docking, we shortlisted the top 20 flavonoids with the highest binding affinities, ranging from -11.7 to -10.6 kcal/mol. Pharmacokinetic profiling narrowed down the list to three orally bioavailable and blood-brain-barrier penetrant flavonoids: Nitiducarpin, Pinocembrin 7-O-benzoate, and Paratocarpin J. Next, trajectories of molecular dynamics simulations of the top protein-ligand complexes were analyzed for binding interactions. The root-mean-square deviation (RMSD) was 1.191 Å (±0.498 Å), 1.725 Å (±0.828 Å), 1.923 Å (±0.942 Å), 0.972 Å (±0.155 Å) for Nitiducarpin, Pinocembrin 7-O-benzoate, Paratocarpin J, and L8D, respectively. The radius of gyration (Rg) was 2.034 nm (±0.015 nm), 2.0.39 nm (± 0.025 nm), 2.053 nm (±0.021 nm), 2.037 nm (±0.016 nm) for Nitiducarpin, Pinocembrin 7-O-benzoate, Paratocarpin J, and L8D, respectively. The solvent accessible surface area (SASA) was 159.477 nm2 (±3.021 nm2), 159.661 nm2 (± 3.707 nm2), 160.755 nm2 (±4.252 nm2), 156.630 nm2 (±3.521 nm2), for Nitiducarpin, Pinocembrin 7-O-benzoate, Paratocarpin J, and L8D complexes, respectively. Therefore, lower RMSD, Rg, and SASA values demonstrated that Nitiducarpin formed the most stable complex with the target protein among the best three ligands. Finally, 2D protein-ligand interaction analysis revealed persistent hydrophobic interactions of Nitiducarpin with the critical residues of RIPK1, including the catalytic triads and the activation loop residues, implicated in the kinase activity and ligand binding. Conclusion: Our target-based virtual screening identified three flavonoids as strong RIPK1 inhibitors, with Nitiducarpin exhibiting the most potent inhibitory potential. Future in vitro and in vivo studies with these ligands could offer new hope for developing effective therapeutics and improving the quality of life for individuals affected by neurodegeneration.


Subject(s)
Flavonoids , Quality of Life , Humans , Molecular Docking Simulation , Flavonoids/pharmacology , Ligands , Benzoates , Receptor-Interacting Protein Serine-Threonine Kinases
3.
J Biomol Struct Dyn ; 42(1): 412-424, 2024.
Article in English | MEDLINE | ID: mdl-36995110

ABSTRACT

Polymorphisms of the disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) are linked to pathophysiological changes in lung inflammation, cancer, Alzheimer's disease (AD), encephalopathy, liver fibrosis, and cardiovascular diseases. In this study, we predicted the pathogenicity of ADAM10 non-synonymous single nucleotide polymorphisms (nsSNPs) in a wide array of mutation analyzing bioinformatics tools. We retrieved 423 nsSNPs from dbSNP-NCBI for the analysis, and 13 were predicted deleterious by each of the ten tools: SIFT, PROVEAN, CONDEL, PANTHER-PSEP, SNAP2, SuSPect, PolyPhen-2, Meta-SNP, Mutation Assessor and Predict-SNP. Further assessment of amino acid sequences, homology models, conservation profiles, and inter-atomic interactions identified C222G, G361E and C639Y as the most pathogenic mutations. We validated this prediction through structural stability analysis using DUET, I-Mutant Suite, SNPeffect and Dynamut. Molecular dynamics simulations and principal component analysis also indicated considerable instability of the C222G, G361E and C639Y variants. Therefore, these ADAM10 nsSNPs could be candidates for diagnostic genetic screening and therapeutic molecular targeting.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Polymorphism, Single Nucleotide , Mutation , Amino Acid Sequence , Computational Biology/methods
4.
Heliyon ; 9(10): e20471, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37810816

ABSTRACT

Lung cancer is responsible for causing one of the highest numbers of cancer deaths. In Bangladesh, both men and women are affected by lung cancer, and environmental contaminants are believed to be one of the main risk factors apart from smoking. The diagnosis of lung cancer is difficult due to the delicate structure and complexity of the lungs. Diagnosis in later stages results in a poor prognosis of the disease. Tissue biopsy is the most reliable way of identifying lung cancer, but it is invasive and requires identification of the primary neoplasm within the lungs. As inflammation is involved in carcinogenesis, circulating levels of cytokines might be elevated in patients during the early stages of cancer. Increased IL-6 levels have been associated with the promotion of tumor growth, and IL-17 is believed to aid metastasis of lung cancer. In this study, the use of IL-6 and IL-17 was investigated as diagnostic markers for lung cancer. IL-6 and IL-17 levels were compared between 35 lung cancer patients and 19 healthy individuals. IL-6 levels were markedly elevated (7.417 pg/mL) in lung cancer cases compared to the controls (0.970 pg/mL), indicating a positive correlation (p < 0.05). IL-17 levels were only slightly higher in lung cancer patients (9.400 pg/mL) compared to healthy individuals (8.922 pg/mL). Both IL-6 and IL-17 levels were higher in patients with adenocarcinoma compared with other subtypes of lung cancer. Treatment with chemotherapy and radiotherapy did not significantly affect IL-6 levels. However, IL-17 levels were reduced due to cancer treatment. Further studies with larger sample sizes assessing the IL-6 and IL-17 in lung cancer patients are needed to establish the diagnostic role of the two cytokines.

5.
Sci Rep ; 13(1): 9909, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336915

ABSTRACT

Liver disease is a serious health problem affecting people worldwide at an alarming rate. The present study aimed to investigate the protective effects of Ganoderma lucidum against CCl4-induced liver toxicity in rats. The experimental Long Evans rats were divided into five groups, of which four groups were treated with carbon tetrachloride (CCl4). Among the CCl4 treated groups, one of the groups was treated with silymarin and two of them with ethanolic extract of G. lucidum at 100 and 200 mg/Kg body weight. The oxidative stress parameters and endogenous antioxidant enzyme concentrations were assessed by biochemical tests. Liver enzymes ALT, AST, and ALP were determined spectrophotometrically. Histopathological examinations were carried out to assess hepatic tissue damage and fibrosis. Reverse transcription PCR (RT-PCR) was performed to determine the expression of IL-1ß, IL-6, IL-10, TNF-α, and TGF-ß genes. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed that G. lucidum is rich in several phytochemicals including 6-Octadecanoic acid (55.81%), l-( +)-Ascorbic acid 2,6-dihexadecanoate (18.72%), Cis-11-Eicosenamide (5.76%), and Octadecanoic acid (5.26%). Treatment with the G. lucidum extract reduced the elevated ALT, AST, ALP levels, and cellular oxidative stress markers and increased the endogenous antioxidant levels. Histopathology observations revealed that the inflammation, infiltration of immune cells, and aberration of collagen fibers in the hepatocytes were altered by the G. lucidum treatment. The increased expression of inflammatory cytokines TNF-α, TGF-ß, IL-1 ß, and IL-6 were markedly suppressed by G. lucidum extract treatment. G. lucidum also prevented the suppression of protective IL-10 expression by CCl4. This study strongly suggests that G. lucidum extract possesses significant hepatoprotective activity as evidenced by reduced oxidative stress and inflammation mediated by suppression in inflammatory cytokine expression and increased protective IL-10 cytokine expression.


Subject(s)
Chemical and Drug Induced Liver Injury , Reishi , Rats , Animals , Antioxidants/metabolism , Liver/metabolism , Rats, Long-Evans , Reishi/metabolism , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Chemical and Drug Induced Liver Injury/pathology , Oxidative Stress , Inflammation/pathology , Plant Extracts/pharmacology , Cytokines/metabolism , Transforming Growth Factor beta/metabolism , Carbon Tetrachloride/toxicity
6.
Adv Ther ; 40(8): 3478-3494, 2023 08.
Article in English | MEDLINE | ID: mdl-37291375

ABSTRACT

INTRODUCTION: Inappropriate antibiotic use in community settings significantly contributes to antimicrobial resistance (AMR) globally, compromising the quality of life and threatening public health. This study aimed to identify AMR contributing factors by analyzing the knowledge, attitude, and practice (KAP) of the unqualified village medical practitioners and pharmacy shopkeepers in rural Bangladesh. METHODS: We performed a cross-sectional study where the participants were pharmacy shopkeepers and unqualified village medical practitioners aged ≥ 18 years and living in Sylhet and Jashore districts in Bangladesh. Primary outcome variables were knowledge, attitude, and practice of antibiotic use and AMR. RESULTS: Among the 396 participants, all were male aged between 18 and 70 years, 247 were unqualified village medical practitioners, and 149 were pharmacy shopkeepers, and the response rate was 79%. Participants showed moderate to poor knowledge (unqualified village medical practitioners, 62.59%; pharmacy shopkeepers, 54.73%), positive to neutral attitude (unqualified village medical practitioners, 80.37%, pharmacy shopkeepers, 75.30%), and moderate practice (unqualified village medical practitioners, 71.44%; pharmacy shopkeepers, 68.65%) scores regarding antibiotic use and AMR. The KAP score range was 40.95-87.62%, and the mean score was statistically significantly higher for unqualified village medical practitioners than pharmacy shopkeepers. Multiple linear regression analysis suggested that having a bachelor's degree, pharmacy training, and medical training were associated with higher KAP scores. CONCLUSION: Our survey results demonstrated that unqualified village medical practitioners and pharmacy shopkeepers in Bangladesh possess moderate to poor knowledge and practice scores on antibiotic use and AMR. Therefore, awareness campaigns and training programs targeting unqualified village medical practitioners and pharmacy shopkeepers should be prioritized, antibiotic sales by pharmacy shopkeepers without prescriptions should be strictly monitored, and relevant national policies should be updated and implemented.


Subject(s)
Anti-Bacterial Agents , Pharmacy , Humans , Male , Adolescent , Young Adult , Adult , Middle Aged , Aged , Female , Anti-Bacterial Agents/therapeutic use , Cross-Sectional Studies , Bangladesh , Health Knowledge, Attitudes, Practice , Quality of Life , Drug Resistance, Bacterial
7.
Heliyon ; 9(2): e13727, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36865458

ABSTRACT

Carbofuran is a widely used poisonous pesticide around the world that helps to control insects during farming. Upon oral ingestion to humans, it exaggerates oxidative stress in various organs like the liver, brain, kidney, and heart. Several studies reported that oxidative stress in the liver initiates and propagates hepatic cell necrosis, ultimately resulting in hepatotoxicity. It also reported that coenzyme Q10 (CoQ10) can neutralize oxidative stress due to its antioxidant properties. However, the hepatoprotective and nephroprotective role of CoQ10 against carbofuran toxicity has not been investigated. Therefore, the present study aimed to evaluate the hepatoprotective and nephroprotective role of CoQ10 in carbofuran-induced hepatotoxicity and nephrotoxicity in a mouse model for the first time. We determined the blood serum diagnostic markers, oxidative stress parameters, antioxidant system, and histopathological characteristics of liver and kidney tissues. The administration of 100 mg/kg of CoQ10 in carbofuran-treated rats significantly attenuated AST, ALT, ALP, serum creatinine, and BUN levels. Moreover, CoQ10 (100 mg/kg) remarkably altered the level of NO, MDA, AOPP, GSH, SOD, and CAT in both the liver and kidney. The histopathological data also unveiled that CoQ10 treatment prevented inflammatory cell infiltration in carbofuran-exposed rats. Therefore, our findings infer that CoQ10 may effectively protect liver and kidney tissues against carbofuran-induced oxidative hepatotoxicity and nephrotoxicity.

8.
J Biomol Struct Dyn ; 41(14): 6502-6517, 2023.
Article in English | MEDLINE | ID: mdl-35938618

ABSTRACT

The human receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a critical necroptosis regulator implicated in cancer, psoriasis, ulcerative colitis, rheumatoid arthritis, Alzheimer's disease, and multiple sclerosis. Currently, there are no specific RIPK1 antagonists in clinical practice. In this study, we took a target-based computational approach to identify blood-brain-barrier-permeable potent RIPK1 ligands with novel chemotypes. Using molecular docking, we virtually screened the Marine Natural Products (MNP) library of 14,492 small molecules. Initial 18 hits were subjected to detailed ADMET profiling for bioavailability, brain penetration, druglikeness, and toxicities and eventually yielded 548773-66-6 as the best ligand. RIPK1 548773-66-6 binding was validated through duplicated molecular dynamics (MD) simulations where the co-crystallized ligand L8D served as a reference. Trajectory analysis indicated negligible Root-Mean-Square-Deviations (RMSDs) of the best ligand 548773-66-6 relative to the protein backbone: 0.156 ± 0.043 nm and 0.296 ± 0.044 nm (mean ± standard deviations) in two individual simulations. Visual inspection confirmed that 548773-66-6 occupied the RIPK1 ligand-binding pocket associated with the kinase activation loop. Further computations demonstrated consistent hydrogen bond interactions of the ligand with the residue ASP156. Binding free energy estimation also supported stable interactions of 548773-66-6 and RIPK1. Together, our in silico analysis predicted 548773-66-6 as a novel ligand for RIPK1. Therefore, 548773-66-6 could be a viable lead for inhibiting necroptosis in central nervous system inflammatory disorders.Communicated by Ramaswamy H. Sarma.

9.
PLoS One ; 17(6): e0270123, 2022.
Article in English | MEDLINE | ID: mdl-35767571

ABSTRACT

Aging-induced memory impairment is closely associated with oxidative stress. D-Galactose (D-gal) evokes severe oxidative stress and mimics normal aging in animals. Curcumin, a natural flavonoid, has potent antioxidant and anti-aging properties. There are several proteins like glutathione S-transferase A1 (GSTA1), glutathione S-transferase omega-1 (GSTO1), kelch-like ECH-associated protein 1 (KEAP1), beta-secretase 1 (BACE1), and amine oxidase [flavin-containing] A (MAOA) are commonly involved in oxidative stress and aging. This study aimed to investigate the interaction of curcumin to these proteins and their subsequent effect on aging-associated memory impairment in two robust animal models: D-Gal and normal aged (NA) mice. The aging mice model was developed by administering D-gal intraperitoneally (i.p). Mice (n = 64) were divided into the eight groups (8 mice in each group): Vehicle, Curcumin-Control, D-gal (100mg/kg; i.p), Curcumin + D-gal, Astaxanthin (Ast) + D-gal, Normal Aged (NA), Curcumin (30mg/kg Orally) + NA, Ast (20mg/kg Orally) + NA. Retention and freezing memories were assessed by passive avoidance (PA) and contextual fear conditioning (CFC). Molecular docking was performed to predict curcumin binding with potential molecular targets. Curcumin significantly increased retention time (p < 0.05) and freezing response (p < 0.05) in PA and CFC, respectively. Curcumin profoundly ameliorated the levels of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation in mice hippocampi. In silico studies revealed favorable binding energies of curcumin with GSTA1, GSTO1, KEAP1, BACE1, and MAOA. Curcumin improves retention and freezing memory in D-gal and nature-induced aging mice. Curcumin ameliorates the levels of oxidative stress biomarkers in mice. Anti-aging effects of curcumin could be attributed to, at least partially, the upregulation of antioxidant enzymes through binding with GSTA1, GSTO1, KEAP1, and inhibition of oxidative damage through binding with BACE1 and MAOA.


Subject(s)
Curcumin , Galactose , Aging/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Antioxidants/adverse effects , Aspartic Acid Endopeptidases/metabolism , Curcumin/adverse effects , Galactose/pharmacology , Glutathione Transferase/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Mice , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , Oxidative Stress
10.
Sci Rep ; 11(1): 22859, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819576

ABSTRACT

Multi-drug-resistance (MDR) is a severe public health concern worldwide, and its containment is more challenging in developing countries due to poor antimicrobial resistance (AMR) surveillance and irrational use of antibiotics. The current study investigated 100 clinical E. coli isolates and revealed that 98% of them were MDR. PCR analysis using 25 selected isolates showed the predominance of metallo-ß-lactamase gene blaNDM (80%) and ESBL genes blaOXA (48%) and blaCTX-M-15 (32%). The AmpC gene was detected in 68% of the isolates, while 32% was tetC positive. Notably, 34% of the isolates were resistant to carbapenem. Whole genome sequence (WGS) analysis of an extensively drug-resistant (XDR) isolate (L16) revealed the presence of the notorious sequence type 131 responsible for multi-drug-resistant infections, multiple antibiotic resistance genes (ARGs), virulence genes, and mobile genetic elements that pose risks to environmental transmission. Our results indicate that MDR is alarmingly increasing in Bangladesh that critically limits the treatment option against infections and contributes to further aggravation to the prevailing situation of MDR worldwide. The findings of this study will be valuable in designing sustainable strategies to contain MDR in the region.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Genome, Bacterial , Whole Genome Sequencing , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bangladesh/epidemiology , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/diagnosis , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Humans , Microbial Sensitivity Tests , Molecular Epidemiology , Prevalence , Virulence Factors/genetics , beta-Lactamases/genetics
11.
Int J Mol Sci ; 22(19)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34639067

ABSTRACT

All eukaryotic cells are composed of the cytoskeleton, which plays crucial roles in coordinating diverse cellular functions such as cell division, morphology, migration, macromolecular stabilization, and protein trafficking. The cytoskeleton consists of microtubules, intermediate filaments, and actin filaments. Cofilin, an actin-depolymerizing protein, is indispensable for regulating actin dynamics in the central nervous system (CNS) development and function. Cofilin activities are spatiotemporally orchestrated by numerous extra- and intra-cellular factors. Phosphorylation at Ser-3 by kinases attenuate cofilin's actin-binding activity. In contrast, dephosphorylation at Ser-3 enhances cofilin-induced actin depolymerization. Cofilin functions are also modulated by various binding partners or reactive oxygen species. Although the mechanism of cofilin-mediated actin dynamics has been known for decades, recent research works are unveiling the profound impacts of cofilin dysregulation in neurodegenerative pathophysiology. For instance, oxidative stress-induced increase in cofilin dephosphorylation is linked to the accumulation of tau tangles and amyloid-beta plaques in Alzheimer's disease. In Parkinson's disease, cofilin activation by silencing its upstream kinases increases α-synuclein-fibril entry into the cell. This review describes the molecular mechanism of cofilin-mediated actin dynamics and provides an overview of cofilin's importance in CNS physiology and pathophysiology.


Subject(s)
Actin Depolymerizing Factors/metabolism , Central Nervous System/physiology , Disease Susceptibility , Nerve Degeneration/etiology , Nerve Degeneration/metabolism , Signal Transduction , Actin Depolymerizing Factors/genetics , Animals , Axons/metabolism , Carrier Proteins/metabolism , Humans , Mental Disorders/etiology , Mental Disorders/metabolism , Multigene Family , Nerve Degeneration/pathology , Nerve Regeneration , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neuronal Plasticity , Protein Binding , Reactive Oxygen Species/metabolism
12.
Biomed Pharmacother ; 143: 112139, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34507121

ABSTRACT

BRIEF INTRODUCTION: Myocardial infarction (MI) is a common manifestation of certain cardiac diseases where oxidative stress and fibrosis aggravate the condition markedly. MAIN OBJECTIVE OF THE STUDY: Investigation of L-carnitine's cardioprotective roles and mechanism of action in a rat model of MI. METHODS: To develop a MI animal model, Isoproterenol (ISO) was administered in male Long Evans rats where animals were divided into five groups (six rats/group). The oxidative stress and antioxidant enzyme activities were determined by different biochemical tests. The real-time PCR was performed to determine the expression of TNF-α and Il-1ß. Histopathological observations by hematoxylin-eosin and Masson trichrome were made to observe the tissue damage and fibrosis in heart and kidney. SIGNIFICANT FINDINGS FROM THE STUDY: The ISO-treated rats showed increased levels of troponin I and lipid peroxidation and lower antioxidant enzyme activity in heart and kidney tissues. The levels of TNF-α and IL-1ß were also increased in ISO-rats. Co-administration of L-carnitine with ISO reversed all these parameters. The elevated levels of uric acid and creatinine kinase and ALP, AST and ALT activities in ISO-rats were also significantly reduced by L-carnitine administration. L-carnitine markedly decreased the infiltration of inflammatory cells and improved the tissue architecture in heart and kidney. Control animals did not show any appreciable response upon L-carnitine administration. RELEVANT CONTRIBUTION TO KNOWLEDGE: These results suggest that L-carnitine plays a defensive role against cardiac and renal damage in ISO-treated MI rat model via suppressing oxidative stress and increasing antioxidant enzyme functions through inhibition of TNF-α and IL-1ß.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Carnitine/pharmacology , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Myocardial Infarction/drug therapy , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Tumor Necrosis Factor-alpha/metabolism , Animals , Disease Models, Animal , Fibrosis , Interleukin-1beta/genetics , Isoproterenol , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Lipid Peroxidation , Male , Myocardial Infarction/chemically induced , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats, Long-Evans , Signal Transduction , Tumor Necrosis Factor-alpha/genetics
13.
Open Med (Wars) ; 16(1): 1168-1169, 2021.
Article in English | MEDLINE | ID: mdl-34435142

ABSTRACT

All governments, regulatory authorities, and vaccine-related committees are under tremendous pressure to roll out vaccines to safeguard the people against COVID-19. To be noted that all COVID-19 vaccines have been developed hurriedly, some with new technologies being used on humans for the first time ever. Most clinical trials did not include elderly patients with comorbidities, hence a careful and logical rollout planning, especially for elderly people, is necessary.

14.
Micromachines (Basel) ; 12(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34442597

ABSTRACT

The development of externally controlled drug delivery systems that can rapidly trigger drug release is widely expected to change the landscape of future drug carriers. In this study, a drug delivery system was developed for on-demand therapeutic effects. The thermoresponsive paraffin film can be loaded on the basis of therapeutic need, including local anesthetic (lidocaine) or topical antibiotic (neomycin), controlled remotely by a portable mini-heater. The application of mild temperature (45 °C) to the drug-loaded paraffin film allowed a rapid stimulus response within a short time (5 min). This system exploits regular drug release and the rapid generation of mild heat to trigger a burst release of 80% within 6 h of any locally administered drug. The in vitro drug release studies and in vivo therapeutic activity were observed for local anesthesia and wound healing using a neomycin-loaded film. The studies demonstrated on-demand drug release with minimized inflammation and microbial infection. This temperature-responsive drug-loaded film can be triggered remotely to provide flexible control of dose magnitude and timing. Our preclinical studies on these remotely adjustable drug delivery systems can significantly improve patient compliance and medical practice.

15.
PeerJ ; 9: e11261, 2021.
Article in English | MEDLINE | ID: mdl-33954055

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has ravaged lives across the globe since December 2019, and new cases are still on the rise. Peoples' ongoing sufferings trigger scientists to develop safe and effective remedies to treat this deadly viral disease. While repurposing the existing FDA-approved drugs remains in the front line, exploring drug candidates from synthetic and natural compounds is also a viable alternative. This study employed a comprehensive computational approach to screen inhibitors for SARS-CoV-2 3CL-PRO (also known as the main protease), a prime molecular target to treat coronavirus diseases. METHODS: We performed 100 ns GROMACS molecular dynamics simulations of three high-resolution X-ray crystallographic structures of 3CL-PRO. We extracted frames at 10 ns intervals to mimic conformational diversities of the target protein in biological environments. We then used AutoDock Vina molecular docking to virtual screen the Sigma-Aldrich MyriaScreen Diversity Library II, a rich collection of 10,000 druglike small molecules with diverse chemotypes. Subsequently, we adopted in silico computation of physicochemical properties, pharmacokinetic parameters, and toxicity profiles. Finally, we analyzed hydrogen bonding and other protein-ligand interactions for the short-listed compounds. RESULTS: Over the 100 ns molecular dynamics simulations of 3CL-PRO's crystal structures, 6LZE, 6M0K, and 6YB7, showed overall integrity with mean Cα root-mean-square deviation (RMSD) of 1.96 (±0.35) Å, 1.98 (±0.21) Å, and 1.94 (±0.25) Å, respectively. Average root-mean-square fluctuation (RMSF) values were 1.21 ± 0.79 (6LZE), 1.12 ± 0.72 (6M0K), and 1.11 ± 0.60 (6YB7). After two phases of AutoDock Vina virtual screening of the MyriaScreen Diversity Library II, we prepared a list of the top 20 ligands. We selected four promising leads considering predicted oral bioavailability, druglikeness, and toxicity profiles. These compounds also demonstrated favorable protein-ligand interactions. We then employed 50-ns molecular dynamics simulations for the four selected molecules and the reference ligand 11a in the crystallographic structure 6LZE. Analysis of RMSF, RMSD, and hydrogen bonding along the simulation trajectories indicated that S51765 would form a more stable protein-ligand complexe with 3CL-PRO compared to other molecules. Insights into short-range Coulombic and Lennard-Jones potentials also revealed favorable binding of S51765 with 3CL-PRO. CONCLUSION: We identified a potential lead for antiviral drug discovery against the SARS-CoV-2 main protease. Our results will aid global efforts to find safe and effective remedies for COVID-19.

16.
J Inflamm Res ; 14: 443-459, 2021.
Article in English | MEDLINE | ID: mdl-33642871

ABSTRACT

INTRODUCTION: Hypoglycemia in diabetes mellitus (DM) correlates with hepatic impairment, nephropathy, lipid abnormalities, and oxidative stress and subsequently complicates the disease pathogenesis. Medicinal plants have been used for the management of diabetes since ancient times. In this study, we explored the potentials of Colocasia affinis (CA), a plant known to possess anti-allergic and anti-inflammatory activities, as a remedy for diabetes and related complications. METHODS: We induced diabetes in rats using a single intraperitoneal dose (65 mg/kg) of streptozotocin (STZ). We next treated the rats with an ethanolic extract of leaves of CA to reveal its antidiabetic and organ-protective potentials. Biomarkers of diabetes, inflammation, and oxidative stress were measured using biochemical and histopathological analysis. We also performed molecular docking for three major phytochemicals (kaempferol, myricetin, and rosmarinic acid) of CA. RESULTS: Oral administration of the CA leaves extract at 250 mg/kg and 500 mg/kg doses decreased blood glucose level significantly (p<0.05) in STZ-induced diabetic rats. The extract also considerably attenuated plasma HbA1c levels and normalized blood lipids, glycogen, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Additionally, treatment with the extract improved kidney complications by decreasing serum creatinine and blood urea nitrogen (BUN) levels. Furthermore, CA leaves extract normalized nitric oxide (NO) and advance oxidative protein products (AOPP) in diabetic rats. The extract also showed significant improvement of the antioxidant enzymes glutathione dismutase (GSH) and superoxide dismutase (SOD) at a dose of 500 mg/kg. Besides, histological investigation demonstrated attenuation of inflammation of the vital organs, including the liver and the kidney. In silico studies revealed that three major phytochemicals (kaempferol, myricetin, and rosmarinic acid) of the ethanolic extract of leaves of CA can inhibit several molecular targets of diabetes and inflammation. CONCLUSION: Collectively, our results demonstrated the therapeutic potentials of CA for the mitigation of diabetes and diabetic complications.

17.
Antioxidants (Basel) ; 9(11)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114699

ABSTRACT

Carotenoids are natural lipid-soluble antioxidants abundantly found as colorful pigments in fruits and vegetables. At least 600 carotenoids occur naturally, although about 20 of them, including ß-carotene, α-carotene, lycopene, lutein, zeaxanthin, meso-zeaxanthin, and cryptoxanthin, are detectable in the human blood. They have distinct physiological and pathophysiological functions ranging from fetal development to adult homeostasis. ß-carotene is a precursor of vitamin A that essentially functions in many biological processes including vision. The human macula lutea and eye lens are rich in lutein, zeaxanthin, and meso-zeaxanthin, collectively known as macular xanthophylls, which help maintain eye health and prevent ophthalmic diseases. Ocular carotenoids absorb light from the visible region (400-500 nm wavelength), enabling them to protect the retina and lens from potential photochemical damage induced by light exposure. These natural antioxidants also aid in quenching free radicals produced by complex physiological reactions and, consequently, protect the eye from oxidative stress, apoptosis, mitochondrial dysfunction, and inflammation. This review discusses the protective mechanisms of macular xanthophylls in preventing eye diseases such as cataract, age-related macular degeneration, and diabetic retinopathy. Moreover, some preclinical animal studies and some clinical trials are discussed briefly to understand carotenoid safety and efficacy.

18.
Rep Biochem Mol Biol ; 8(4): 419-423, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32582801

ABSTRACT

BACKGROUND: c-MAF, a transcription factor that belongs to the b-Zip Maf transcription factor family, was found to be critical for lens development in vertebrates. It is a well-known fact that the adult human ocular surface expresses c-MAF, however, its role in the limbus, cornea and conjunctiva remains unknown. Thus, the present study aimed to investigate c-MAF expression within the human ocular surface, and its potential role in pterygium pathogenesis. METHODS: We performed immunohistochemical staining to detect c-MAF expression in frozen adult human tissue sections, including the limbus, cornea and conjunctiva, and cultured cells from eye cadavers. We then compared c-MAF expression to the expression of a known protein, P63. Lastly, we performed RT-PCR, and immunohistochemistry for c-MAF expression in healthy adult human conjunctiva and pterygium. RESULTS: We found differential c-MAF expression between adult human limbus, cornea and conjunctiva tissues. Further, we observed that c-MAF is downregulated in the pterygium compared to healthy conjunctiva. CONCLUSION: Overall, our results suggest that c-MAF may play a context-specific role in maintaining limbal, corneal and conjunctival homeostasis, and may be critical for preventing pterygium development in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...