Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Commun ; 5(2): fcad062, 2023.
Article in English | MEDLINE | ID: mdl-37006333

ABSTRACT

A mild traumatic brain injury is a neurological disturbance of transient or/and chronic nature after a direct blow of the head/neck or exposure of the body to impulsive biomechanical forces, indirectly affecting the brain. The neuropathological events leading to the clinical signs, symptoms and functional disturbances are still elusive due to a lack of sensitive brain-screening tools. Animal models offer the potential to study neural pathomechanisms in close detail. We recently proposed a non-invasive protocol for inducing concussion-like symptoms in larval zebrafish via exposure to rapid linearly accelerating-decelerating body motion. By mean of auditory 'startle reflex habituation' assessments-an established neurophysiological health index-we probed acute and chronic effects that mirror human concussion patterns. This study aimed at expanding our previous work by assessing the ensuing effects with visual-as opposed to auditory-'startle reflex habituation' quantifications, by using the same methodology. We observed that immediately after impact exposure, the fish showed impaired sensory reactivity and smaller decay constant, possibly mirroring acute signs of confusion or loss of consciousness in humans. By 30-min post-injury, the fish display temporary signs of visual hypersensitivity, manifested as increased visuomotor reactivity and a relatively enlarged decay constant, putatively reflecting human post-concussive sign of visual hypersensitivity. In the following 5-24 h, the exposed fish progressively develop chronic signs of CNS dysfunction, in the form of low startle responsivity. However, the preserved decay constant suggests that neuroplastic changes may occur to restore CNS functioning after undergoing the 'concussive procedure'. The observed findings expand our previous work providing further behavioural evidence for the model. Limitations that still require addressment are discussed, advancing further behavioural and microscopic analyses that would be necessary for the validation of the model in its putative relatability with human concussion.

2.
PLoS One ; 17(5): e0268901, 2022.
Article in English | MEDLINE | ID: mdl-35622781

ABSTRACT

A mild traumatic brain injury is a neurological dysfunction caused by biomechanical forces transmitted to the brain in physical impacts. The current understanding of the neuropathological cascade resulting in the manifested clinical signs and symptoms is limited due to the absence of sensitive brain imaging methods. Zebrafish are established models for the reproduction and study of neurobiological pathologies. However, all available models mostly recreate moderate-to-severe focal injuries in adult zebrafish. The present work has induced a mild brain trauma in larval zebrafish through a non-invasive biomechanical approach. A custom-made apparatus with a commercially available motor was employed to expose larvae to rapidly decelerating linear movements. The neurophysiological changes following concussion were assessed through behavioural quantifications of startle reflex locomotor distance and habituation metrics. Here we show that the injury was followed, within five minutes, by a transient anxiety state and CNS dysfunction manifested by increased startle responsivity with impaired startle habituation, putatively mirroring the human clinical sign of hypersensitivity to noise. Within a day after the injury, chronic effects arose, as evidenced by an overall reduced responsivity to sensory stimulation (lower amplitude and distance travelled along successive stimuli), reflecting the human post-concussive symptomatology. This study represents a step forward towards the establishment of a parsimonious (simple, less ethically concerning, yet sensitive) animal model of mild TBI. Our behavioural findings mimic aspects of acute and chronic effects of human concussion, which warrant further study at molecular, cellular and circuit levels. While our model opens wide avenues for studying the underlying cellular and molecular pathomechanisms, it also enables high-throughput testing of therapeutic interventions to accelerate post-concussive recovery.


Subject(s)
Brain Concussion , Brain Injuries , Animals , Brain/pathology , Larva , Zebrafish
3.
Sci Rep ; 11(1): 22410, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789729

ABSTRACT

The startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatric conditions and are hence considered an important behavioural marker of neurophysiological function. The amplitude, offset and decay constant of the auditory SRH in larval zebrafish have recently been characterised, revealing that the measures are affected by variation in vibratory frequency, intensity, and interstimulus-interval. Currently, no study provides a model-based analysis of the effect of physical properties of light stimuli on the visual SRH. This study assessed the effect of incremental light-stimulus intensity on the SRH of larval zebrafish through a repeated-measures design. Their total locomotor responses were normalised for the time factor, based on the behaviour of a (non-stimulated) control group. A linear regression indicated that light intensity positively predicts locomotor responses due to larger SRH decay constants and offsets. The conclusions of this study provide important insights as to the effect of light properties on the SRH in larval zebrafish. Our methodology and findings constitute a relevant reference framework for further investigation in translational neurophysiological research.


Subject(s)
Habituation, Psychophysiologic/radiation effects , Larva/physiology , Light , Reflex, Startle/radiation effects , Zebrafish/physiology , Animals , Behavior, Animal/radiation effects , Locomotion/radiation effects , Models, Animal
5.
Brain Cogn ; 148: 105677, 2021 03.
Article in English | MEDLINE | ID: mdl-33486194

ABSTRACT

Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.


Subject(s)
Electroencephalography , Magnetoencephalography , Brain , Brain Mapping , Cognition , Humans
6.
Sci Rep ; 11(1): 846, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436805

ABSTRACT

Zebrafish is an established animal model for the reproduction and study of neurobiological pathogenesis of human neurological conditions. The 'startle reflex' in zebrafish larvae is an evolutionarily preserved defence response, manifesting as a quick body-bend in reaction to sudden sensory stimuli. Changes in startle reflex habituation characterise several neuropsychiatric disorders and hence represent an informative index of neurophysiological health. This study aimed at establishing a simple and reliable experimental protocol for the quantification of startle reflex response and habituation. The fish were stimulated with 20 repeated pulses of specific vibratory frequency, acoustic intensity/power, light-intensity and interstimulus-interval, in three separate studies. The cumulative distance travelled, namely the sum of the distance travelled (mm) during all 20 stimuli, was computed as a group-level description for all the experimental conditions in each study. Additionally, by the use of bootstrapping, the data was fitted to a model of habituation with a first-order exponential representing the decay of locomotor distance travelled over repeated stimulation. Our results suggest that startle habituation is a stereotypic first-order process with a decay constant ranging from 1 to 2 stimuli. Habituation memory lasts no more than 5 min, as manifested by the locomotor activity recovering to baseline levels. We further observed significant effects of vibratory frequency, acoustic intensity/power and interstimulus-interval on the amplitude, offset, decay constant and cumulative distance travelled. Instead, the intensity of the flashed light did not contribute to significant behavioural variations. The findings provide novel insights as to the influence of different stimuli parameters on the startle reflex habituation and constitute a helpful reference framework for further investigation.


Subject(s)
Acoustic Stimulation/methods , Habituation, Psychophysiologic/physiology , Larva/physiology , Reflex, Startle/physiology , Zebrafish/physiology , Animals , Computer Simulation , Models, Animal
7.
Front Hum Neurosci ; 14: 196, 2020.
Article in English | MEDLINE | ID: mdl-32670035

ABSTRACT

Neural synchronization patterns are involved in several complex cognitive functions and constitute a growing trend in neuroscience research. While synchrony patterns in working memory have been extensively discussed, a complete understanding of their role in cognitive control and inhibition is still elusive. Here, we provide an up-to-date review on synchronization patterns underlying behavioral inhibition, extrapolating common grounds, and dissociating features with other inhibitory functions. Moreover, we suggest a schematic conceptual framework and highlight existing gaps in the literature, current methodological challenges, and compelling research questions for future studies.

SELECTION OF CITATIONS
SEARCH DETAIL