Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 286(40): 35247-56, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21844191

ABSTRACT

Reelin is a 3461-residue secreted glycoprotein that plays a critical role in brain development through its action on target neurons. Although it is known that functional reelin protein exists as multimer formed by interchain disulfide bond(s) as well as through non-covalent interactions, the chemical nature of the multimer assembly has been elusive. In the present study, we identified, among 122 cysteines present in full-length reelin, the single critical cysteine residue (Cys(2101)) responsible for the covalent multimerization. C2101A mutant reelin failed to assemble into disulfide-bonded multimers, whereas it still exhibited non-covalently associated high molecular weight oligomeric states in solution. Detailed analysis of tryptic fragments produced from the purified reelin proteins revealed that the minimum unit of the multimer is a homodimeric reelin linked via Cys(2101) present in the central region and that this cysteine does not connect to the N-terminal region of reelin, which had been postulated as the primary oligomerization domain. A surface plasmon resonance binding assay confirmed that C2101A mutant reelin retained binding capability toward two neuronal receptors apolipoprotein E receptor 2 and very low density lipoprotein receptor. However, it failed to show signaling activity in the assay using the cultured neurons. These results indicate that an intact higher order architecture of reelin multimer maintained by both Cys(2101)-mediated homodimerization and other non-covalent association present elsewhere in the reelin primary structure are essential for exerting its full biological activity.


Subject(s)
Cell Adhesion Molecules, Neuronal/chemistry , Extracellular Matrix Proteins/chemistry , Nerve Tissue Proteins/chemistry , Serine Endopeptidases/chemistry , Amino Acid Sequence , Animals , Brain/metabolism , CHO Cells , Cell Adhesion Molecules, Neuronal/metabolism , Cell Line , Cricetinae , Cricetulus , Dimerization , Disulfides/chemistry , Extracellular Matrix Proteins/metabolism , Humans , Mice , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Reelin Protein , Sequence Homology, Amino Acid , Serine Endopeptidases/metabolism , Signal Transduction
2.
Protein Sci ; 17(12): 2120-6, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18787202

ABSTRACT

Biologically important human proteins often require mammalian cell expression for structural studies, presenting technical and economical problems in the production/purification processes. We introduce a novel affinity peptide tagging system that uses a low affinity anti-peptide monoclonal antibody. Concatenation of the short recognition sequence enabled the successful engineering of an 18-residue affinity tag with ideal solution binding kinetics, providing a low-cost purification means when combined with nondenaturing elution by water-miscible organic solvents. Three-dimensional information provides a firm structural basis for the antibody-peptide interaction, opening opportunities for further improvements/modifications.


Subject(s)
Antibodies, Monoclonal/metabolism , Epitopes/metabolism , Proteins/isolation & purification , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody Affinity , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/isolation & purification , Cell Line, Tumor , Chromatography, Affinity/methods , Crystallography, X-Ray/methods , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/isolation & purification , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Kinetics , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/isolation & purification , Peptides/chemistry , Peptides/genetics , Peptides/immunology , Protein Binding , Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/isolation & purification , Reelin Protein , Serine Endopeptidases/genetics , Serine Endopeptidases/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...