Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 78(4): 1124-1134, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33687511

ABSTRACT

Phage display is one of the important and effective molecular biology techniques and has remained indispensable for research community since its discovery in the year 1985. As a large number of nucleotide fragments may be cloned into the phage genome, a phage library may harbour millions or sometimes billions of unique and distinctive displayed peptide ligands. The ligand-receptor interactions forming the basis of phage display have been well utilized in epitope mapping and antigen presentation on the surface of bacteriophages for screening novel vaccine candidates by using affinity selection-based strategy called biopanning. This versatile technique has been modified tremendously over last three decades, leading to generation of different platforms for combinatorial peptide display. The translation of new diagnostic tools thus developed has been used in situations arising due to pathogenic microbes, including bacteria and deadly viruses, such as Zika, Ebola, Hendra, Nipah, Hanta, MERS and SARS. In the current situation of pandemic of Coronavirus disease (COVID-19), a search for neutralizing antibodies is motivating the researchers to find therapeutic candidates against novel SARS-CoV-2. As phage display is an important technique for antibody selection, this review presents a concise summary of the very recent applications of phage display technique with a special reference to progress in diagnostics and therapeutics for coronavirus diseases. Hopefully, this technique can complement studies on host-pathogen interactions and assist novel strategies of drug discovery for coronaviruses.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , Cell Surface Display Techniques/methods , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , Bacteriophage T4/genetics , Bacteriophage T4/metabolism , Bacteriophage T7/genetics , Bacteriophage T7/metabolism , Escherichia coli/genetics , Escherichia coli/virology , Humans
2.
Acta Parasitol ; 60(4): 727-34, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26408598

ABSTRACT

The present immuno-diagnostic method using soluble antigens from whole cell lysate antigen for trypanosomosis have certain inherent problems like lack of standardized and reproducible antigens, as well as ethical issues due to in vivo production, that could be alleviated by in vitro production. In the present study we have identified heat shock protein 70 (HSP70) from T. evansi proteome. The nucleotide sequence of T. evansi HSP70 was 2116 bp, which encodes 690 amino acid residues. The phylogenetic analysis of T. evansi HSP70 showed that T. evansi occurred within Trypanosoma clade and is most closely related to T. brucei brucei and T. brucei gambiense, whereas T. congolense HSP70 laid in separate clade. The two partial HSP70 sequences (HSP-1 from N-terminal region and HSP-2 from C-terminal region) were expressed and evaluated as diagnostic antigens using experimentally infected equine serum samples. Both recombinant proteins detected antibody in immunoblot using serum samples from experimental infected donkeys with T. evansi. Recombinant HSP-2 showed comparable antibody response to Whole cell lysate (WCL) antigen in immunoblot and ELISA. The initial results indicated that HSP70 has potential to detect the T. evansi infection and needs further validation on large set of equine serum samples.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , HSP70 Heat-Shock Proteins/immunology , Immunoassay/methods , Recombinant Proteins/immunology , Trypanosoma/immunology , Trypanosomiasis/veterinary , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/isolation & purification , Equidae , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Trypanosoma/genetics , Trypanosomiasis/diagnosis
4.
Vet Ital ; 46(4): 449-58, 2010.
Article in English | MEDLINE | ID: mdl-21120800

ABSTRACT

Equine influenza is a contagious viral disease that affects all members of the family Equidae, i.e., horses, donkeys and mules. The authors describe the pattern of equine influenza outbreaks in a number of states of India from July 2008 to June 2009. The disease was first reported in June 2008 in Katra (Jammu and Kashmir) and spread to ten other states within a year. All outbreaks of equine influenza in the various states were confirmed by laboratory investigations (virus isolation and/or serological confirmation based on haemagglutination inhibition [HI] assays of paired samples) before declaring them as equine influenza virus-affected state(s). The virus (H3N8) was reported from various locations in the country including Katra, Mysore (Karnataka), Ahmedabad (Gujarat), Gopeshwar and Uttarkashi (Uttarakhand) and was isolated in 9- to 11-day-old embryonated chicken eggs. The virus was confirmed as H3N8 by HI assays with standard serum and amplification of full-length haemagglutinin and neuraminidase genes by reverse transcriptase-polymerase chain reaction. Serum samples (n = 4 740) of equines from 13 states in India screened by HI revealed 1074 (22.65%) samples as being positive for antibodies to equine influenza virus (H3N8).


Subject(s)
Disease Outbreaks , Influenza A Virus, H3N8 Subtype , Orthomyxoviridae Infections/epidemiology , Animals , India/epidemiology , Space-Time Clustering
SELECTION OF CITATIONS
SEARCH DETAIL
...