Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 26899-26914, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38741334

ABSTRACT

The extreme sensitivity of 2D-layered materials to environmental adsorbates, which is typically seen as a challenge, is harnessed in this study to fine-tune the material properties. This work investigates the impact of environmental adsorbates on electrical properties by studying metal-semiconductor-metal (MSM) devices fabricated on CVD-synthesized SnSe flakes. The freshly prepared devices exhibit positive photoconductivity (PPC), whereas they gradually develop negative photoconductivity (NPC) after being exposed to an ambient environment for ∼1 day. While the photodetectors based on positive photoconductivity exhibit a responsivity and detectivity of 6.1 A/W and 5.06 × 108 Jones, the same for the negative photoconductivity-based photodetector reaches up to 36.3 A/W and 1.49 × 109 Jones, respectively. In addition, the noise-equivalent power of the NPC photodetector decreases by 300 times as compared to the PPC device, which implies a prominent detection capability of the NPC device against weak photo signals. To substantiate the hypothesis that negative photoconductivity stems from the photodesorption of water and oxygen molecules on the dangling bonds of SnSe flakes, the flakes are etched along the most active planes (010) with a focused laser beam in an inert environment, which enhances responsivity by 43%, supporting negative photoconductivity linked to photodesorption. Furthermore, the humidity-dependent dark current variation of the NPC photodetectors is used to design a humidity sensor for human respiration monitoring with faster response and recovery times of 0.72 and 0.68 s, respectively. These findings open up the possibility of tuning the photoelectrical response of layered materials in a facile manner to develop future sensors and optoelectronic multifunctional devices.

2.
Nanoscale ; 16(22): 10663-10674, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38767603

ABSTRACT

One of the most coveted objectives in the realm of energy conversion technologies is the development of highly efficient and economically viable electrocatalysts for the oxygen evolution reaction. The commercialization of such techniques has thus far been impeded by their slow response kinetics. One of the many ways to develop highly effective electrocatalysts is to judiciously choose a coupling interface that maximizes catalyst performance. In this study, the in situ electrochemical phase transformation of MnCo2O4-Ni3N into MnCo2O4-NiOOH is described. The catalyst has an exceptional overpotential of 224 mV to drive a current density of 10 mA cm-2. Strong interfacial contact is seen in the MnCo2O4-Ni3N catalyst, leading to a considerable electronic redistribution between the MnCo2O4 and Ni3N phases. This causes an increase in the valence state of Ni, which makes it an active site for the adsorption of *OH, O*, and *OOH (intermediates). This charge transfer facilitates the rapid phase transformation to form NiOOH from Ni3N. At a higher current density of 300 mA cm-2, the catalyst remained stable for a period of 140 h. DFT studies also revealed that the in situ-formed NiOOH on the MnCo2O4 surface results in superior OER kinetics compared to that of NiOOH alone.

3.
Nanoscale ; 16(16): 7951-7957, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38546266

ABSTRACT

The manipulation of the relative twist angle between consecutive layers in two-dimensional (2D) materials dramatically modulates their electronic characteristics. Twisted bilayer graphene (tblg) and twisted boron nitride (tBN) exhibit Moiré patterns that have the potential to revolutionize various fields, from electronics to quantum materials. Here, the electronic and thermoelectric properties of 21.8° tblg and 21.8° tBN and a 21.8° twisted graphene/boron nitride (Gr/BN) heterostructure were investigated using density functional theory and Boltzmann transport theory. The twisted Gr/BN heterostructure possesses a wide band gap of 1.95 eV, which overcomes the limitations of the absence of a band gap of graphene and boron nitride's extremely wide band gap. A significant increase in thermoelectric power factor was obtained for the heterostructure compared to its parent materials, 21.8° tblg and 21.8° tBN. It has a thermal conductivity of 5.88 W m-1 K-1 at 300 K, which is much lower than those of 21.8° tblg and 21.8° tBN. It is observed that graphene plays an important role in electron transport or power factor enhancement, whereas BN helps in reducing the thermal conductivity in twisted Gr/BN systems. A strong role of boundary scattering in thermal transport compared to electrical transport was observed. A high figure of merit (ZT) of 1.28 for the twisted Gr/BN heterostructure at a ribbon width of L = 10 nm and T = 900 K was obtained. This suggests its suitability as an effective material for thermoelectric applications.

4.
J Phys Condens Matter ; 36(21)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38335545

ABSTRACT

Low-dimensional piezoelectrics have drawn attention to the realization in nano-scale devices with high integration density. A unique branch of 2D Tellurene bilayers formed of weakly interacting quasi-1D chains via van der Waals forces is found to exhibit piezoelectricity due to the semiconducting band gap and spatial inversion asymmetry. Various bilayer stackings are systematically examined using density functional theory, revealing optimal piezoelectricity when dipole arrangements are identical in each layer. Negative piezoelectricity has been observed in two of the stackings AA' and AA″ while other two stackings exhibit the usual positive piezoelectric effect. The layer-dependent 2D piezoelectricity (∣e222D ∣) increases with an increasing number of layers in contrast to the odd-even effect observed in h-BN and MoS2. Notably, the piezoelectric effect is observed in even-layered structures due to the homogeneous stacking in multilayers. Strain is found to enhance in-plane piezoelectricity by 4.5 times (-66.25 × 10-10C m-1at -5.1% strain) due to the increasing difference in Born effective charges of positively and negatively charged Te-atoms under compressive biaxial strains. Moreover, out-of-plane piezoelectricity is induced by applying an external electric field, thus implying Tellurene is a promising candidate for piezoelectric sensors.

5.
Small ; 20(14): e2306756, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38126960

ABSTRACT

For an uninterrupted self-powered network, the requirement of miniaturized energy storage device is of utmost importance. This study explores the potential utilization of phosphorus-doped nickel oxide (P-NiO) to design highly efficient durable micro-supercapacitors. The introduction of P as a dopant serves to enhance the electrical conductivity of bare NiO, leading to 11-fold augmentation in volumetric capacitance to 841.92 Fcm-3 followed by significant enhancement of energy and power density from 6.71 to 42.096 mWhcm-3 and 0.47 to 1.046 Wcm-3, respectively. Theoretical calculations used to determine the adsorption energy of OH- ions, revealing higher in case of bare NiO (1.52 eV) as compared to phosphorus-doped NiO (0.64 eV) leading to high electrochemical energy storage performance. The as-designed micro-supercapacitor (MSC) device demonstrates a facile integration with the photovoltaic system for renewable energy storage and smooth transfer to external loads for enlightening the blue LED for ≈1 min. The choice of P-NiO/Ni not only contributes to cost reduction but also ensures minimal lattice mismatch at the interface facilitating high durability up to 15 K cycles along with capacitive retention of ≈100% and coulombic efficiency of 93%. Thus, the heterostructure unveils the possibilities of exploring miniaturized energy storage devices for portable electronics.

6.
Small ; 19(50): e2304399, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37626463

ABSTRACT

Water splitting via an uninterrupted electrochemical process through hybrid energy storage devices generating continuous hydrogen is cost-effective and green approach to address the looming energy and environmental crisis toward constant supply of hydrogen fuel in fuel cell driven automobile sector. The high surface area metal-organic framework (MOF) driven bimetallic phosphides (ZnP2 @CoP) on top of CNT-carbon cloth matrix is utilized as positive and negative electrodes in energy storage devices and overall water splitting. The as-prepared positive electrode exhibits excellent specific capacitances/capacity of 1600 F g-1 /800 C g-1 @ 1A g-1 and the corresponding hybrid device reveals an energy density of 83.03 Wh kg-1 at power density of 749.9 W kg-1 . Simultaneously, the electrocatalytic performance of heterostructure shows overpotentials of 90 mV@HER and 204 mV@OER at current density of 10 and 20 mA cm-2 , respectively in alkaline electrocatalyzer. Undoubtedly, it shows overall water splitting with low cell voltage of 1.53 V@10 mA cm-2 having faradic and solar-to-hydrogen conversion efficiency of 98.81% and 9.94%, respectively. In addition, the real phase demonstration of the overall water-splitting is performed where the electrocatalyzer is connected with a series of hybrid supercapacitor devices powered up by the 6 V standard silicon solar panel to produce uninterrupted green H2 .

7.
J Phys Condens Matter ; 35(41)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37402382

ABSTRACT

Two-dimensional materials are emerging as promising dielectric materials and have enormous possibilities in wearable micro and nanoelectronics, sensor, and detectors. The theoretical calculation is performed to investigate the pyroelectric coefficient and pyroelectric figure of merit (FOM) of Janus CrSeBr monolayer. Quasi-harmonic approximation (QHA) is used to calculate primary (p1) and secondary (p2) pyroelectric coefficients. Spontaneous polarization is calculated for different temperatures using QHA. Pyroelectric coefficient (1.21 µC m-2 K at 300 K) is obtained for CrSeBr monolayer, which is∼5times higher compared to MoSSe monolayer. A high FOM is found for CrSeBr monolayer(Fv=0.035 m2 C-1),(Fi=1.97 pm V-1). High FOM for voltage responsivity of CrSeBr monolayer could be beneficial for several commercial applications.

8.
Biomater Sci ; 11(10): 3469-3485, 2023 May 16.
Article in English | MEDLINE | ID: mdl-36961503

ABSTRACT

Bio-piezoelectric materials are endowed with characteristic features such as non-invasiveness, small energy attenuation and deep tissue penetrability. Thus, they have the ability to serve as both diagnostic and therapeutic modalities for targeting and treating various dreaded disorders scourging mankind. Herein, piezoelectric nanotubes derived from a modified amino acid-containing dipeptide, phenylalanine-αß-dehydrophenylalanine (Phe-ΔPhe; FΔF), possessing acoustic stimulation-triggered reactive oxygen species (ROS) generating ability, were employed and projected for achieving a piezo-active response enabled anti-cancer effect in glioma cells. A model anti-cancer drug doxorubicin (Dox) was also loaded into the nanotubes and the combined system depicted enhanced ROS production and cell killing under an acoustically developed piezo-catalytic environment. Cellular level assessment studies demonstrated that the dipeptide based piezoelectric nanotubes could lead to an increase in the cellular Ca2+ ion concentration, further inducing ROS-triggered cytotoxicity accompanied by high therapeutic efficacy in C6 glioma cells. Overall, our structures have the uniqueness of serving as acoustic stimulus-driven, wireless, and non-invasive electro-chemotherapeutic agents for enabling heightened cancer cell killing and may complement other chemotherapeutic modalities for treating the disease.


Subject(s)
Electrochemotherapy , Glioma , Nanotubes , Humans , Reactive Oxygen Species , Glioma/drug therapy , Doxorubicin/chemistry , Cell Line, Tumor , Phenylalanine/chemistry , Dipeptides/pharmacology
9.
J Colloid Interface Sci ; 641: 82-90, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36924548

ABSTRACT

The activity-enhancement of a new-generation catalyst focuses on the collegial approach among specific solids which exploit the mutual coactions of these materials for HER applications. Strategic manipulation of these solid interfaces typically reveals unique electronic states different from their pure phases, thus, providing a potential passage to create catalysts with excellent activity and stability. Herein, the formation of the NiWO4-NiO interface has been designed and synthesized via a three-step method. This strategy enhances the chance of the formation of abundant heterointerfaces due to the fine distribution of NiWO4 nanoparticles over Ni(OH)2 sheets. NiWO4-NiO has superior HER activity in an alkaline (1 M KOH) electrolyte with modest overpotentials of 68 mV at 10 mA cm-2 current density. The catalyst is highly stable in an alkaline medium and negligible change was observed in the current density even after 100 h of continuous operation. This study explores a unique method for high-performance hydrogen generation by constructing transition metal-oxides heterojunction. The XPS studies reveal an electronic redistribution driven by charge transfer through the NiWO4-NiO interface. The density functional theory (DFT) calculations show that the NiWO4-NiO exhibits a Pt-like activity with the hydrogen Gibbs free energy (ΔGH*) value of 0.06 eV compared to the Pt(ΔGH* = -0.02 eV).

10.
Langmuir ; 39(1): 320-333, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36525568

ABSTRACT

Mechanical and solar to electrical energy conversion using piezo- and ferroelectric and photovoltaic effects may be a practical answer to the rising energy demand. In this quest, piezoelectric polymer poly(vinylidene fluoride-hexafluoroproylene) (P(VDF-HFP)) has gained interest due to its superior piezo- and ferroelectricity. In photovoltaic applications, inorganic halide perovskite (IHP) of CsPbI3 is considered a prime model compound. However, its application is limited because of the photoactive perovskite phase instability at ambient conditions. Here, we report the in situ synthesis of the stable perovskite γ-CsPbI3 through an electrospinning process at room temperature, encapsulated within a ferroelectric copolymer poly(vinylidene fluoride-hexafluoroproylene) (P(VDF-HFP)) as a composite nanofiber. Computational calculation using density functional theory (DFT) reveals that tensile strain plays a critical role in the dynamical stabilization of γ-CsPbI3. This tensile strain is triggered by the electrospinning process, which aids in the formation and growth of γ-CsPbI3. In the CsPbI3-P(VDF-HFP) composite nanofiber, γ-CsPbI3 nucleates the polar ß-crystalline phase in P(VDF-HFP), which results in the intrinsic piezo- and ferroelectric characteristics. The γ-CsPbI3 aids in preferable molecular dipole orientation, resulting in improved nanoscale piezo- and ferroelectric properties. The composite nanofiber features a higher piezoelectric d33 magnitude (∼30 pm/V) and lower decay constant for polarized domains (τcomposite ≈ 17). The composite was utilized as a piezoelectric nanogenerator to demonstrate human physiological motion monitoring in self-power mode. The relevant pressure sensitivities of 81 and 40 mV/kPa for the low-pressure (<0.6 kPa) and high-pressure (>0.6 to 12 kPa) ranges, respectively, promise its suitability in the health care sector.

11.
Nanotechnology ; 34(9)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36541544

ABSTRACT

High curie temperature 2D materials are important for the progress of the field of spin caloritronics. The spin Seebeck effect and conventional thermoelectric figure of merit (ZT) can give a great insight into how these 2D magnetic materials will perform in spin caloritronics applications. Here in this paper, we have systematically studied 2D Janus monolayers based on CrX3monolayers. We obtain a ZT of 0.31 and 0.21 for the Cr2Br3S3and Cr2I3S3Janus monolayers. The spin Seebeck coefficient obtained at room temperature is also very high (∼1570µVK-1in the hole-doped region and ∼1590µVK-1in the electron-doped region). The thermal conductivity of these monolayers (∼22 Wm-1K-1for Cr2Br3S3and ∼16 Wm-1K-1for Cr2I3S3) are also very similar to other 2D semiconductor transition metals chalcogenides. These findings suggest a high potential for these monolayers in the spin caloritronics field.

12.
Nanoscale Adv ; 4(16): 3381-3390, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36131706

ABSTRACT

In recent years, due to high energy consumption in the building sector and subsequent environmental issues, environment-friendly and cost-effective thermally insulating materials are in high demand to improve the energy efficiency of buildings. Current commercially available thermal insulating materials (polystyrene) always pose a challenge due to their non-biodegradability and poor insulating performance. To this end, biomass-derived aerogels are attracting significant interest as renewable and sustainable insulating materials. In this work, we have developed a facile strategy for synthesizing cellulose nanofibers from biomass-derived wood pulp as a cost-effective starting material by TEMPO-oxidation, and further incorporating iron oxide nanoparticles to make a nanohybrid. Interestingly, in these nanohybrids, the functional attributes like mechanical strength and flammability were improved to a great extent and thus overcoming the limitations of the commercially available thermal insulating materials in terms of their stability and durability. Most importantly, these nanohybrids demonstrated very low thermal conductivity, as low as 0.024 W m-1 K-1, indicating the better insulating potential of these nanohybrids as compared to other conventional insulating materials.

13.
ACS Nano ; 16(3): 4861-4875, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35188366

ABSTRACT

Water splitting using renewable energy resources is an economic and green approach that is immensely enviable for the production of high-purity hydrogen fuel to resolve the currently alarming energy and environmental crisis. One of the effective routes to produce green fuel with the help of an integrated solar system is to develop a cost-effective, robust, and bifunctional electrocatalyst by complete water splitting. Herein, we report a superhydrophilic layered leaflike Sn4P3 on a graphene-carbon nanotube matrix which shows outstanding electrochemical performance in terms of low overpotential (hydrogen evolution reaction (HER), 62 mV@10 mA/cm2, and oxygen evolution reaction (OER), 169 mV@20 mA/cm2). The outstanding stability of HER at least for 15 days at a high applied current density of 400 mA/cm2 with a minimum loss of potential (1%) in acid medium infers its potential compatibility toward the industrial sector. Theoretical calculations indicate that the decoration of Sn4P3 on carbon nanotubes modulates the electronic structure by creating a higher density of state near Fermi energy. The catalyst also reveals an admirable overall water splitting performance by generating a low cell voltage of 1.482 V@10 mA/cm2 with a stability of at least 65 h without obvious degradation of potential in 1 M KOH. It exhibited unassisted solar energy-driven water splitting when coupled with a silicon solar cell by extracting a high stable photocurrent density of 8.89 mA/cm2 at least for 90 h with 100% retention that demonstrates a high solar-to-hydrogen conversion efficiency of ∼10.82%. The catalyst unveils a footprint for pure renewable fuel production toward carbon-free future green energy innovation.

14.
Dalton Trans ; 51(5): 2019-2025, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35029620

ABSTRACT

Electrocatalytic water splitting is one of the key technologies for future energy systems envisioned for the storage of energy obtained from variable renewables and green fuels. The development of efficient, durable, Earth-abundant and cheap electrocatalysts for the oxygen evolution reaction is a scorching area of research. The oxygen evolution reaction has huge potential for fuel cell and metal-air battery applications. Herein, we reported interfacially interacted and uniformly decorated Co3O4-NiO hybrid nanostructures formed by a metal-organic framework (Co2-BDC(OH)2) using BDC as a linker to the metal center. The fine nanosheets of Co2-BDC(OH)2 were first uniformly grown over the honeycomb-like structure of nickel foam (NF). After controlled calcination of these nanosheets/NF composites, a uniformly decorated, binder-free Co3O4-NiO/NF electrocatalyst was synthesized. The transformation of Co2-BDC(OH)2/NF into Co3O4-NiO/NF was characterized by several techniques such as powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy, transmission electron microscopy, etc. The catalyst exhibits a low overpotential of 311 mV vs. RHE at 10 mA cm-2 current density. The catalyst also shows long-term stability (24 h) with a Tafel slope value of 90 mV dec-1. The obtained experimental results are also in-line with the theoretical data acquired from model systems.

15.
ACS Appl Mater Interfaces ; 13(46): 55281-55291, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34779604

ABSTRACT

One of the major objectives of using the improved Hummers' method was to exfoliate the graphene layers by oxidizing and thereafter reducing them to obtain highly conductive reduced graphene layers, which can be used in the construction of electronic devices or as a part of catalyst composites in energy conversion reactions. Herein, we have employed a similar idea to exfoliate the layered double hydroxide (LDH), which is proposed as a promising material for the oxygen evolution reaction (OER) electrocatalysis. Usually, the efficiency of these materials is largely restricted due to their sheetlike morphology, which is susceptible to stacking. In this work, NiFe-LDH sheets were fabricated on nickel foam in a one-step co-precipitation technique and their ultrathin nanosheets (∼2 nm) are obtained by in situ oxygen-plasma-controlled exfoliation. In addition, the oxygen vacancies in exfoliated sheets were generated by a chemical reduction method that further improved the electronic conductivity and overall electrocatalytic performance of the catalyst. This approach can address the limitations of NiFe-LDH, such as poor conductivity and low stability, making it more efficient for electrocatalysis. It is also observed that the catalyst having 60 s O-plasma exposure after chemical reduction, i.e., NiFe-OOHOV, outperformed remaining electrocatalysts and exhibited superior OER activity with a low overpotential of 330 mV to achieve a high current density of 50 mA cm-2. The catalyst also displayed an ECSA-normalized OER overpotential of 288 mV at a current density of 10 mA cm-2 and exhibited excellent long-term stability (120 h) in an alkaline electrolyte. Remarkably, ultrathin defect-rich catalyst continuously produced O2, resulting in a high faradaic efficiency of 98.1% for the OER.

16.
Chem Commun (Camb) ; 57(74): 9426-9429, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34528943

ABSTRACT

Oxygen and hydrogen evolutions are the two fundamental processes involved in electrocatalytic water splitting. Two dimensional (2D) transition metal dichalcogenides (TMDCs) and graphene-based materials are regarded as the emergent catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, doped graphene and molybdenum dichalcogenide heterostructures are evaluated for their catalytic activity using density functional theory (DFT). The Janus MoSSe and P-doped graphene heterostructure is found to have the best electrocatalytic activities with smaller overpotential values (ηOER = 1.67 V and ηHER = 0.10 V) as compared to those of the parent monolayers graphene (ηOER = 1.85 V and ηHER = 1.80 V) and MoS2 (ηOER = 2.99 V and ηHER = 1.72 V).

17.
ACS Nano ; 15(3): 5586-5599, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33625208

ABSTRACT

Water splitting via an electrochemical process to generate hydrogen is an economic and green approach to resolve the looming energy and environmental crisis. The rational design of multicomponent materials with seamless interfaces having robust stability, facile scalability, and low-cost electrocatalysts is a grand challenge to produce hydrogen by water electrolysis. Herein, we report a superhydrophilic homogeneous bimetallic phosphide of Ni2P-CuP2 on Ni-foam-graphene-carbon nanotubes (CNTs) heterostructure using facile electrochemical metallization followed by phosphorization without any intervention of metal-oxides/hydroxides. This bimetallic phosphide shows ultralow overpotentials of 12 (HER, hydrogen evolution reaction) and 140 mV (OER, oxygen evolution reaction) at current densities of 10 and 20 mA/cm2 in acidic and alkaline mediums, respectively. The excellent stability lasts for at least for 10 days at a high current density of 500 mA/cm2 without much deviation, inferring the practical utilization of the catalyst toward green fuel production. Undoubtedly, the catalyst is capable enough for overall water splitting at a very low cell voltage of 1.45 V @10 mA/cm2 with an impressive stability of at least 40 h, showing a minimum loss of potential. Theoretical study has been performed to understand the reaction kinetics and d-band shifting among metal atoms in the heterostructure (Ni2P-CuP2) that favor the HER and OER activities, respectively. In addition, the catalyst demonstrates an alternate transformation of solar energy to green H2 production using a standard silicon solar cell. This work unveils a smart design and synthesizes a highly stable electrocatalyst against an attractive paradigm of commercial water electrolysis for renewable electrochemical energy conversion.

18.
Nanoscale Adv ; 3(11): 3279-3287, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-36133659

ABSTRACT

Two dimensional (2D) chalcogenide monolayers have diversified applications in optoelectronics, piezotronics, sensors and energy harvesting. The group-IV tellurene monolayer is one such emerging material in the 2D family owing to its piezoelectric, thermoelectric and optoelectronic properties. In this paper, the mechanical and piezoelectric properties of 2D tellurene in centrosymmetric ß and non-centrosymmetric ß' phases are investigated using density functional theory. ß'-Te has shown a negative Poisson's ratio of -0.024 along the zigzag direction. Giant in-plane piezoelectric coefficients of -83.89 × 10-10 C m-1 and -42.58 × 10-10 C m-1 are observed for ß'-Te under biaxial and uniaxial strains, respectively. The predicted values are remarkably higher, that is 23 and 12 times the piezoelectric coefficient of a MoS2 monolayer with biaxial and uniaxial strain in the zigzag direction, respectively. A large thermal expansion coefficient of tellurene is also estimated using quasi harmonic approximation. High piezoelectricity combined with exotic mechanical and thermal properties makes tellurene a very promising candidate in nanoelectronics.

19.
ACS Appl Mater Interfaces ; 12(52): 57898-57906, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33326214

ABSTRACT

Hydrogen is one of the cleanest forms of energy carrier which can solve the twin problem of exhaustion of fossil fuels and climate change. The exploration of low-cost and earth-abundant electrocatalysts for hydrogen generation process is an emerging area of research. Profound catalyst tailoring with mutually contrast phases on a porous support for crafting large hydrogen evolution reaction (HER) active sites increases the catalytic activity in many folds. Herein, a porous silica-supported molybdenum phosphide and molybdenum carbide nanoparticle (SiMoCP) has been synthesized. The intermingled porous molybdenum carbide and molybdenum phosphide nanohybrid shows excellent catalytic activity toward hydrogen evolution. Such a modified nanostructured electrocatalyst enhances the electrode-electrolyte interaction and suppresses the charge transfer resistance. As a result, the electrocatalyst (SiMoCP) accomplishes very high HER activity with an onset potential of 53 mV and an overpotential of 88 mV at a current density of 10 mA cm-2 in the acidic medium. Furthermore, the SiMoCP catalyst showed a Tafel slope value of 37 mV dec-1 with long-term durability of 5000 cycles.

20.
J Phys Chem C Nanomater Interfaces ; 124(32): 17476-17484, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32904867

ABSTRACT

Several ternary "Janus" metal dichalcogenides such as {Mo,Zr,Pt}-SSe have emerged as candidates with significant potential for optoelectronic, piezoelectric, and thermoelectric applications. SnSSe, a natural option to explore as a thermoelectric given that its "parent" structures are SnS2 and SnSe2 has, however, only recently been shown to be mechanically stable. Here, we calculate the lattice thermal conductivities of the Janus SnSSe monolayer along with those of its parent dicalchogenides. The phonon frequencies of SnSSe are intermediate between those of SnSe2 and SnS2; however, its thermal conductivity is the lowest of the three and even lower than that of a random Sn[S0.5Se0.5]2 alloy. This can be attributed to the breakdown of inversion symmetry and manifests as a subtle effect beyond the reach of the relaxation-time approximation. Together with its low favorable power factor, its thermal conductivity confirms SnSSe as a good candidate for thermoelectric applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...