Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Front Behav Neurosci ; 18: 1354390, 2024.
Article in English | MEDLINE | ID: mdl-38495426

ABSTRACT

Introduction: Epigenetic modifications have emerged as key contributors to the enduring behavioral, molecular and epigenetic neuroadaptations during withdrawal from chronic alcohol exposure. The present study investigated the long-term consequences of chronic alcohol exposure on spatial working memory (WM) and associated changes of transcriptionally repressive histone H3 lysine 9 dimethylation (H3K9me2) in the prefrontal cortex (PFC). Methods: Male C57BL/6 mice were allowed free access to either 12% (v/v) ethanol for 5 months followed by a 3-week abstinence period or water. Spatial WM was assessed through the spontaneous alternation T-maze test. Alcoholic and water mice received daily injections of GABAB agonist baclofen or saline during alcohol fading and early withdrawal. Global levels of histone modifications were determined by immunohistochemistry. Results: Withdrawal mice displayed WM impairments along with reduced prefrontal H3K9me2 levels, compared to water-drinking mice. The withdrawal-induced decrease of H3K9me2 occurred concomitantly with increased level of permissive H3K9 acetylation (H3K9ac) in the PFC. Baclofen treatment rescued withdrawal-related WM deficits and fully restored prefrontal H3K9me2 and H3K9ac. Alcohol withdrawal induced brain region-specific changes of H3K9me2 and H3K9ac after testing, with significant decreases of both histone marks in the dorsal hippocampus and no changes in the amygdala and dorsal striatum. Furthermore, the magnitude of H3K9me2 in the PFC, but not the hippocampus, significantly and positively correlated with individual WM performances. No correlation was observed between H3K9ac and behavioral performance. Results also indicate that pre-testing intraperitoneal injection of UNC0642, a selective inhibitor of histone methyltransferase G9a responsible for H3K9me2, led to WM impairments in water-drinking and withdrawal-baclofen mice. Collectively, our results demonstrate that alcohol withdrawal induced brain-region specific alterations of H3K9me2 and H3K9ac, an effect that persisted for at least three weeks after cessation of chronic alcohol intake. Conclusion: The findings suggest a role for long-lasting decreased H3K9me2 specifically in the PFC in the persistent WM impairments related to alcohol withdrawal.

2.
Front Psychiatry ; 14: 1129030, 2023.
Article in English | MEDLINE | ID: mdl-37304443

ABSTRACT

Introduction: The hippocampus and striatum have dissociable roles in memory and are necessary for spatial and procedural/cued learning, respectively. Emotionally charged, stressful events promote the use of striatal- over hippocampus-dependent learning through the activation of the amygdala. An emerging hypothesis suggests that chronic consumption of addictive drugs similarly disrupt spatial/declarative memory while facilitating striatum-dependent associative learning. This cognitive imbalance could contribute to maintain addictive behaviors and increase the risk of relapse. Methods: We first examined, in C57BL/6 J male mice, whether chronic alcohol consumption (CAC) and alcohol withdrawal (AW) might modulate the respective use of spatial vs. single cue-based learning strategies, using a competition protocol in the Barnes maze task. We then performed in vivo electrophysiological studies in freely moving mice to assess learning-induced synaptic plasticity in both the basolateral amygdala (BLA) to dorsal hippocampus (dCA1) and BLA to dorsolateral striatum (DLS) pathways. Results: We found that both CAC and early AW promote the use of cue-dependent learning strategies, and potentiate plasticity in the BLA → DLS pathway while reducing the use of spatial memory and depressing BLA → dCA1 neurotransmission. Discussion: These results support the view that CAC disrupt normal hippocampo-striatal interactions, and suggest that targeting this cognitive imbalance through spatial/declarative task training could be of great help to maintain protracted abstinence in alcoholic patients.

3.
Front Psychiatry ; 10: 580, 2019.
Article in English | MEDLINE | ID: mdl-31620025

ABSTRACT

Persistent regional glucocorticoid (GC) dysregulation in alcohol-withdrawn subjects emerges as a key factor responsible for protracted molecular and neural alterations associated with long-term cognitive dysfunction. Regional brain concentrations of corticosterone vary independently from plasma concentrations in alcohol-withdrawn subjects, which may account for the treatment of alcohol withdrawal-induced persistent pathology. Thus, from a pharmacological point of view, a main issue remains to determine the relative efficacy of compounds targeting the GC receptors to attenuate or suppress the long-lasting persistence of brain regional GC dysfunctions in abstinent alcoholics, as well as persistent changes of neural plasticity. Data from animal research show that acting directly on GC receptors during the withdrawal period, via selective antagonists, can significantly counteract the development and persistence of cognitive and neural plasticity disorders during protracted abstinence. A critical remaining issue is to better assess the relative long-term efficacy of GC antagonists and other compounds targeting the corticotropic axis activity such as gamma-aminobutyric acid A (GABAA) and GABAB agonists. Indeed, benzodiazepines (acting indirectly on GABAA receptors) and baclofen (agonist of the GABAB receptor) are the compounds most widely used to reduce alcohol dependence. Clinical and preclinical data suggest that baclofen exerts an effective and more powerful counteracting action on such persistent cognitive and endocrine dysfunctions as compared to diazepam, even though its potential negative effects on memory processes, particularly at high doses, should be better taken into account.

4.
Neurobiol Stress ; 10: 100161, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31309134

ABSTRACT

Exposure to prolonged, unpredictable stress leads to glucocorticoids-mediated long-lasting neuroendocrine abnormalities associated with emotional and cognitive impairments. Excessive levels of serum glucocorticoids (cortisol in humans, corticosterone in rodents) contribute notably to deficits in working memory (WM), a task which heavily relies on functional interactions between the medial prefrontal cortex (PFC) and the dorsal hippocampus (dHPC). However, it is unknown whether stress-induced increases in plasma corticosterone mirror corticosterone levels in specific brain regions critical for WM. After a 6 week-UCMS exposure, C57BL/6 J male mice exhibited increased anxiety- and depressive-like behaviors when measured one week later and displayed WM impairments timely associated with increased plasma corticosterone response. In chronically stressed mice, basal phosphorylated/activated CREB (pCREB) was markedly increased in the PFC and the CA1 area of the dHPC and WM testing did not elicit any further increase in pCREB in the two regions. Using microdialysis samples from freely-moving mice, we found that WM testing co-occurred with a rapid and sustained increase in corticosterone response in the PFC while there was a late, non-significant rise of corticosterone in the dHPC. The results also show that non-stressed mice injected with corticosterone (2 mg/kg i.p.) before WM testing displayed behavioral and molecular alterations similar to those observed in stressed animals while a pre-WM testing metyrapone injection (35 mg/kg i.p.), a corticosterone synthesis inhibitor, prevented the effects of UCMS exposure. Overall, the abnormal regional increase of corticosterone concentrations mainly in the PFC emerges as a key factor of enduring WM dysfunctions in UCMS-treated animals.

5.
CNS Neurosci Ther ; 25(8): 832-841, 2019 08.
Article in English | MEDLINE | ID: mdl-31094061

ABSTRACT

AIM: Although cognitive deficits commonly co-occur with stress-related emotional disorders, effect of procognitive drugs such as histaminergic H3 receptor antagonists are scarcely studied on memory retrieval in stress condition. METHODS: Experiment 1. Memory of two successive spatial discriminations (D1 then D2) 24 hours after learning was studied in a four-hole board in mice. H3 receptor antagonist ciproxifan (ip 3 mg/kg) and acute stress (three electric footshocks; 0.9 mA; 15 ms) were administered 30 and 15 minutes respectively before memory retrieval test. Fos immunostaining was performed to evaluate the neural activity of several brain areas. Experiment 2. Effects of ciproxifan and acute stress were evaluated on anxiety-like behavior in the elevated plus maze and glucocorticoid activity using plasma corticosterone assay. RESULTS: Experiment 1. Ciproxifan increased memory retrieval of D2 in nonstress condition and of D1 in stress one. Ciproxifan mitigated the stress-induced increase of Fos expression in the prelimbic and infralimbic cortex, the central and basolateral amygdala and the CA1 of dorsal hippocampus. Experiment 2. Ciproxifan dampened the stress-induced anxiety-like behavior and plasma corticosterone increase. CONCLUSION: Ciproxifan improved contextual memory retrieval both in stress and nonstress conditions without exacerbating behavioral and endocrine responses to stress. Overall, these data suggest potential usefulness of H3 receptor antagonists as cognitive enhancer both in nonstress and stress conditions.


Subject(s)
Cognition/drug effects , Histamine H3 Antagonists/pharmacology , Imidazoles/pharmacology , Memory/drug effects , Stress, Psychological/psychology , Animals , Corticosterone/blood , Discrimination Learning/drug effects , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/analysis , Stress, Psychological/blood
6.
Neuroreport ; 30(10): 707-712, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31095108

ABSTRACT

We previously showed that an acute stress-induced an early corticosterone rise in the dorsal hippocampus (dHPC) and a delayed one in the ventral hippocampus (vHPC). Congruently, we hypothesized that the dHPC may influence the time-course evolution of poststress glucocorticoid rise in the vHPC. To probe this issue, we performed ibotenic acid lesions of the dHPC and measured by microdialysis the time-course evolution of corticosterone rise in the vHPC after an acute stress delivery. In nonstress condition, we showed that the dHPC lesion induced a significant increase of corticosterone both in plasma and in the vHPC. In addition, an acute stress (electric footshocks) induced a faster and more sustained corticosterone rise in the vHPC of dHPC-lesioned animals, as compared to sham-operated ones. This study provides new found evidence to the effect that the dHPC lesion alters the time-course evolution of corticosterone rise within the vHPC after stress.


Subject(s)
Corticosterone/metabolism , Hippocampus/metabolism , Stress, Psychological/metabolism , Time Factors , Animals , Glucocorticoids/adverse effects , Male , Memory Disorders/metabolism , Mice, Inbred C57BL , Microdialysis/methods , Temporal Lobe/metabolism
7.
Front Psychiatry ; 10: 238, 2019.
Article in English | MEDLINE | ID: mdl-31105600

ABSTRACT

This study compares the impact of repeated injections of baclofen (an agonist of GABAB receptors) or diazepam (a benzodiazepine having an agonist action on GABAA receptors) given during the alcohol-withdrawal period on the stress-induced restoration of alcohol-seeking behavior and hypothalamic-pituitary-adrenal (HPA) axis dysfunction after a long (4 weeks) abstinence. Thus, C57BL/6 mice were submitted to a 6-month alcohol consumption [12% volume/volume (v/v)] and were progressively withdrawn to water before testing. Diazepam (Valium®, Roche) and baclofen (Baclofen®, Mylan) were administered intraperitoneally for 15 consecutive days (1 injection/day) during the withdrawal period at decreasing doses ranging from 1.0 mg/kg (Day 15) to 0.25 mg/kg (Day 1) for diazepam and from 1.5 mg/kg (Day 15) to 0.37 mg/kg (Day 1) for baclofen. Alcohol-seeking behavior was evaluated by alcohol-place preference in an odor recognition task. In the stress condition, mice received three electric footshocks 45 min before behavioral testing. Blood was sampled immediately after behavioral testing, and plasma corticosterone concentrations were measured by commercial enzyme immunoassay kits. Results showed that non-stressed withdrawn mice did not exhibit alcohol-place preference or alteration of plasma corticosterone concentrations relative to water controls. After stress, however, withdrawn mice exhibited a significant alcohol-place preference and higher circulating corticosterone concentrations as compared to stressed water controls. Interestingly, repeated administration during the withdrawal phase of baclofen but not diazepam suppressed both the alcohol-place preference and normalized corticosterone levels in stressed withdrawn animals. In conclusion, this study evidences that a pre-treatment with baclofen but not with diazepam during the withdrawal phase normalized, even after a long period of abstinence, the HPA axis response to stress, which contributes to the long-term preventing effects of this compound on alcohol-seeking behavior.

8.
Behav Pharmacol ; 30(4): 351-357, 2019 06.
Article in English | MEDLINE | ID: mdl-30489342

ABSTRACT

This study evaluated the procognitive effects of S 38093 (a new inverse agonist of the histaminergic H3 receptor) and S 47445 (a new α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) in 2-3-month-old Swiss mice as compared with donepezil and memantine, two main reference compounds in the treatment of Alzheimer's disease. The object recognition task allows the study of natural forgetting and is classically used in assessing drug effects on memory. Here, we show that mice exhibit significant object recognition at short (15 min) but not long (24 h) retention intervals separating the familiarization and recognition phases. S 47445 (1.0, 3.0, and 10.0 mg/kg) and S 38093 (0.3, 1.0, and 3.0 mg/kg), both administered postoperatively, 1 h before familiarization and recognition sessions, rescued memory at the long retention interval; their memory-enhancing effects were as powerful as those obtained with donepezil or memantine (1.0 and 3.0 mg/kg for both compounds). Thus, S 38093 and S 47445, detected as positive controls in the object recognition task, are promising compounds for the treatment of amnesic syndromes.


Subject(s)
Azabicyclo Compounds/pharmacology , Benzamides/pharmacology , Benzoxazines/pharmacology , Memory/drug effects , Triazines/pharmacology , Animals , Azabicyclo Compounds/metabolism , Benzamides/metabolism , Benzoxazines/metabolism , Cognition/drug effects , Donepezil/pharmacology , Histamine Agonists/metabolism , Histamine Agonists/pharmacology , Male , Maze Learning/drug effects , Memantine/pharmacology , Memory/physiology , Memory Disorders/drug therapy , Mice , Nootropic Agents/metabolism , Nootropic Agents/pharmacology , Receptors, AMPA/physiology , Receptors, Histamine H3/physiology , Recognition, Psychology/drug effects , Triazines/metabolism
9.
Cogn Affect Behav Neurosci ; 18(4): 665-679, 2018 08.
Article in English | MEDLINE | ID: mdl-29713956

ABSTRACT

The study was designed to assess whether repeated administration of diazepam (Valium®, Roche)-a benzodiazepine exerting an agonist action on GABAA receptors-may alleviate both the short (1 week, 1W) and long-term (6 weeks, 6W) deleterious effects of alcohol withdrawal occurring after chronic alcohol consumption (6 months; 12% v/v) in C57/BL6 male mice. More pointedly, we first evidenced that 1W and 6W alcohol-withdrawn mice exhibited working memory deficits in a sequential alternation task, associated with sustained exaggerated corticosterone rise and decreased pCREB levels in the prefrontal cortex (PFC). In a subsequent experiment, diazepam was administered i.p. for 9 consecutive days (1 injection/day) during the alcohol withdrawal period at decreasing doses ranging from 1.0 mg/kg to 0.25 mg/kg. Diazepam was not detected in the blood of withdrawn mice at the time of memory testing, occurring 24 hours after the last diazepam injection. Repeated diazepam administration significantly improved alternation rates and normalized levels of glucocorticoids and pCREB activity in the PFC in 1W but not in 6W withdrawn mice. Thus, repeated diazepam administration during the alcohol-withdrawal period only transitorily canceled out the working memory impairments and glucocorticoid alterations in the PFC of alcohol-withdrawn animals.


Subject(s)
Alcoholism/drug therapy , Diazepam/pharmacology , Memory Disorders/drug therapy , Nootropic Agents/pharmacology , Prefrontal Cortex/drug effects , Substance Withdrawal Syndrome/drug therapy , Alcoholism/complications , Alcoholism/metabolism , Alcoholism/psychology , Animals , Anxiety/drug therapy , Anxiety/etiology , Anxiety/metabolism , Central Nervous System Depressants/adverse effects , Central Nervous System Depressants/blood , Cyclic AMP Response Element-Binding Protein/metabolism , Diazepam/blood , Disease Models, Animal , Ethanol/adverse effects , Ethanol/blood , GABA-A Receptor Agonists/blood , GABA-A Receptor Agonists/pharmacology , Glucocorticoids/metabolism , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Memory, Short-Term/drug effects , Mice, Inbred C57BL , Nootropic Agents/blood , Prefrontal Cortex/metabolism , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/psychology , Time Factors
11.
Article in English | MEDLINE | ID: mdl-29409919

ABSTRACT

This study investigated whether sst2 gene deletion interacts with age and chronic stress exposure to produce exacerbated emotional and cognitive ageing. Middle-aged (10-12 month) sst2 knockout (sst2KO) and wild-type (WT) mice underwent an unpredictable chronic mild stress (UCMS) procedure for 6 weeks or no stress for control groups. This was followed by a battery of tests to assess emotional and cognitive functions and neuroendocrine status (CORT level). A re-evaluation was performed 6 months later (i.e. with 18-month-old mice). UCMS reproduced neuroendocrine and behavioral features of stress-related disorders such as elevated circulating CORT levels, physical deteriorations, increased anxiety- and depressive-like behaviors and working memory impairments. sst2KO mice displayed behavioral alterations which were similar to stressed WT and exhibited exacerbated changes following UCMS exposure. The evaluations performed in the older mice showed significant long-term effects of UCMS exposure. Old sst2KO mice previously exposed to UCMS exhibited spatial learning and memory accuracy impairments and high levels of anxiety-like behaviors which drastically added to the effects of normal ageing. Spatial abilities and emotionality scores (mean z-scores) measured both at the UCMS outcome and 6 months later were correlated with the initially measured CORT levels in middle-age. The present findings indicate that the deletion of the sst2 receptor gene produces chronic hypercorticosteronemia and exacerbates sensitivity to stressors which over time, have consequences on ageing brain function processes.


Subject(s)
Aging/metabolism , Aging/psychology , Cognition/physiology , Emotions/physiology , Receptors, Somatostatin/deficiency , Stress, Psychological/metabolism , Animals , Anxiety/metabolism , Chronic Disease , Cognitive Dysfunction/metabolism , Corticosterone/blood , Depression/metabolism , Disease Models, Animal , Gene Deletion , Memory Disorders/metabolism , Memory, Short-Term/physiology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Somatostatin/genetics
12.
Toxicol Lett ; 293: 73-76, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-28743565

ABSTRACT

Cognitive and emotional disorders have been reported in veterans intoxicated with sulfur mustard (SM) a chemical weapon belonging to the category of vesicating agents. However, the intense stress associated with the SM intoxication may render difficult determining the exact role played by SM intoxication itself on the emergence and maintaining of cognitive disorders. Animal's model would allow overcoming this issue. So far, we presently investigated the cognitive and emotional impact of an acute cutaneous intoxication with CEES (2-chloroethyl ethyl sulfide), a SM analog in C57/Bl6 mice. Our study evidenced that up to 5days after a single acute neat CEES skin exposure, compared to controls, mice exhibited i) a significant increase in anxiety-like reactivity in an elevated plus-maze and in an open-field tasks and ii) an alteration of working memory in a sequential alternation task. In contrast, mice submitted to intoxication with a diluted CEES solution or hydrochloric acid (HCl) did not show any memory or emotional impairments. Given that, Our data shows that a single local cutaneous intoxication with neat CEES induced long-lasting cognitive and emotional pejorative effects, in accordance with the epidemiological observations in veterans. Thus, the single acute neat CEES cutaneous intoxication in mice could allow studying the sulfur mustard-induced cognitive and emotional disorders and their further counter-measures.


Subject(s)
Affective Symptoms/chemically induced , Affective Symptoms/psychology , Chemical Warfare Agents/toxicity , Cognition Disorders/chemically induced , Cognition Disorders/psychology , Mustard Gas/analogs & derivatives , Administration, Cutaneous , Administration, Topical , Animals , Anxiety/chemically induced , Anxiety/psychology , DNA Damage , Erythema/chemically induced , Erythema/pathology , Male , Memory, Short-Term/drug effects , Mice , Mice, Inbred C57BL , Mustard Gas/administration & dosage , Mustard Gas/toxicity , Skin/pathology
13.
Addict Biol ; 22(4): 898-910, 2017 Jul.
Article in English | MEDLINE | ID: mdl-26860616

ABSTRACT

This study intends to determine whether long-lasting glucocorticoids (GCs) dysregulation in the prefrontal cortex (PFC) or the dorsal hippocampus (dHPC) play a causal role in the maintenance of working memory (WM) deficits observed after alcohol withdrawal. Here, we report that C57/BL6 male mice submitted to 6 months alcohol consumption (12 percent v/v) followed by 1 (1W) or 6 weeks (6W) withdrawal periods exhibit WM deficits in a spatial alternation task and an exaggerated corticosterone rise during and after memory testing in the PFC but not the dHPC. In contrast, emotional reactivity evaluated in a plus-maze is altered only in the 1W group. No behavioral alterations are observed in mice still drinking alcohol. To determine the causal role of corticosterone in the withdrawal-associated long-lasting WM deficits, we further show that a single intraperitoneal injection injection of metyrapone (an inhibitor of corticosterone synthesis) 30 minutes before testing, prevents withdrawal-associated WM deficits and reestablishes PFC activity, as assessed by increased phosphorylated C-AMP Response Element-binding protein (CREB) immunoreactivity in withdrawn mice. Finally, we show that intra-PFC blockade of mineralocorticoid receptors by infusion of spironolactone and, to a lesser extent, of GCs receptors by injection of mifepristone reverses the WM deficits induced by withdrawal whereas the same injections into the dHPC do not. Overall, our study evidences that long-lasting GCs dysfunction selectively in the PFC is responsible for the emergence and maintenance of WM impairments after withdrawal and that blocking prefrontal mineralocorticoid receptors receptors restores WM in withdrawn animals.


Subject(s)
Alcoholism/complications , Corticosterone/blood , Memory Disorders/chemically induced , Memory, Short-Term/drug effects , Prefrontal Cortex/metabolism , Spatial Memory/drug effects , Substance Withdrawal Syndrome/complications , Alcoholism/blood , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Hippocampus , Male , Memory Disorders/blood , Mice , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Substance Withdrawal Syndrome/blood
14.
Neuropsychopharmacology ; 42(8): 1647-1656, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27986975

ABSTRACT

Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst2 or sst4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst2 or sst4, but not sst1 or sst3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst2 agonists selectively produced anxiolytic-like behaviors whereas both sst2 and sst4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst2KO mice and depressive-like behaviors observed in both sst2KO and sst4KO strains. Both hippocampal sst2 and sst4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.


Subject(s)
Emotions/physiology , Hippocampus/metabolism , Receptors, Somatostatin/physiology , Stress, Psychological/physiopathology , Animals , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Corticosterone/blood , Corticosterone/metabolism , Hypothalamo-Hypophyseal System/drug effects , Male , Mice , Mice, Knockout , Octreotide/pharmacology , Pituitary-Adrenal System/drug effects , Receptors, Somatostatin/agonists , Receptors, Somatostatin/genetics , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
15.
Behav Brain Res ; 320: 128-135, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27939692

ABSTRACT

Fragile X Syndrome (FXS) is a pervasive developmental disorder due to a mutation in the FMR1 X-linked gene. Despite its clear genetic cause, the expression of FXS symptoms is known to be modulated by environmental factors, including stress. Furthermore, several studies have shown disturbances in stress regulatory systems in FXS patients and Fmr1 mice. These studies have mostly focused on the hormonal responses to stress, using the acute exposure to a single type of stressor. Hence, little is known about the behavioral effects of stress in FXS, and the importance of the nature of the stressing procedure, especially in the context of a repeated exposure that more closely resembles real life conditions. Here we evaluated the effects of chronic exposure to different types of stress (i.e., either repeated restraint or unpredictable stress) on the behavioral phenotype of adult Fmr1 mice. Our results demonstrated that chronic stress induced deficits in social interaction and working memory only in WT mice and the impact of stress depended on the type of stressors and the specific behavior tested. Our data suggest that the behavioral sensitivity to stress is dramatically reduced in FXS, opening new views on the impact of gene-environment interactions in this pathology.


Subject(s)
Behavioral Symptoms/etiology , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Social Behavior , Stress, Psychological/psychology , Analysis of Variance , Animals , Corticosterone/blood , Disease Models, Animal , Exploratory Behavior , Fragile X Mental Retardation Protein/genetics , Locomotion/drug effects , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Stress, Psychological/complications
16.
Front Psychiatry ; 7: 165, 2016.
Article in English | MEDLINE | ID: mdl-27766083

ABSTRACT

A prime mechanism that contributes to the development and maintenance of alcoholism is the dysregulation of the hypothalamic-pituitary-adrenal axis activity and the release of glucocorticoids (cortisol in humans and primates, corticosterone in rodents) from the adrenal glands. In the brain, sustained, local elevation of glucocorticoid concentration even long after cessation of chronic alcohol consumption compromises functional integrity of a circuit, including the prefrontal cortex (PFC), the hippocampus (HPC), and the amygdala (AMG). These structures are implicated in learning and memory processes as well as in orchestrating neuroadaptive responses to stress and anxiety responses. Thus, potentiation of anxiety-related neuroadaptation by alcohol is characterized by an abnormally AMG hyperactivity coupled with a hypofunction of the PFC and the HPC. This review describes research on molecular and epigenetic mechanisms by which alcohol causes distinct region-specific adaptive changes in gene expression patterns and ultimately leads to a variety of cognitive and behavioral impairments on prefrontal- and hippocampal-based tasks. Alcohol-induced neuroadaptations involve the dysregulation of numerous signaling cascades, leading to long-term changes in transcriptional profiles of genes, through the actions of transcription factors such as [cAMP response element-binding protein (CREB)] and chromatin remodeling due to posttranslational modifications of histone proteins. We describe the role of prefrontal-HPC-AMG circuit in mediating the effects of acute and chronic alcohol on learning and memory, and region-specific molecular and epigenetic mechanisms involved in this process. This review first discusses the importance of brain region-specific dysregulation of glucocorticoid concentration in the development of alcohol dependence and describes how persistently increased glucocorticoid levels in PFC may be involved in mediating working memory impairments and neuroadaptive changes during withdrawal from chronic alcohol intake. It then highlights the role of cAMP-PKA-CREB signaling cascade and histone acetylation within the PFC and limbic structures in alcohol-induced anxiety and behavioral impairments, and how an understanding of functional alterations of these pathways might lead to better treatments for neuropsychiatric disorders.

17.
Planta Med ; 82(13): 1163-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27093246

ABSTRACT

The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity.


Subject(s)
Aging/drug effects , Blueberry Plants/chemistry , Memory, Short-Term/drug effects , Plant Extracts/pharmacology , Animals , Male , Mice , Mice, Inbred C57BL
18.
Front Pharmacol ; 7: 492, 2016.
Article in English | MEDLINE | ID: mdl-28066242

ABSTRACT

Donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer's disease patients. An alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both histaminergic and cholinergic pathways, to create a synergistic effect. To that aim, 14 month old C57/Bl6 mice were administered per oesophagy during nine consecutive days with Donepezil (at 0.1 and 0.3 mg/kg) and S 38093 (at 0.1, 0.3, and 1.0 mg/kg), a H3 histaminergic antagonist developed by Servier, alone or in combination and tested for memory in a contextual memory task that modelized the age-induced memory dysfunction. The present study shows that the combination of Donepezil and S 38093 induced a dose-dependent synergistic memory-enhancing effect in middle-aged mice with a statistically higher size of effect never obtained with compounds alone and without any pharmacokinetic interaction between both compounds. We demonstrated that the memory-enhancing effect of the S 38093 and Donepezil combination is mediated by its action on the septo-hippocampal circuitry, since it canceled out the reduction of CREB phosphorylation (pCREB) observed in these brain areas in vehicle-treated middle-aged animals. Overall, the effects of drug combinations on pCREB in the hippocampus indicate that the synergistic promnesiant effects of the combination on memory performance in middle-aged mice stem primarily from an enhancement of neural activity in the septo-hippocampal system.

19.
Eur J Pharmacol ; 761: 70-8, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25934571

ABSTRACT

This study investigated in mice the dose-effect of caffeine on memory retrieval in non-stress and stress conditions. C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board which involved either distinct contextual (CSD) or similar contextual (SSD) cues. All mice received an i.p. injection of vehicle or caffeine (8, 16 or 32mg/kg) 30min before the test session. Results showed that in non-stress conditions, the 16mg/kg caffeine dose induced a significant enhancement of D1 performance in CSD but not in SSD. Hence, we studied the effect of an acute stress (electric footshocks) administered 15min before the test session on D1 performance in caffeine-treated mice. Results showed that stress significantly decreased D1 performance in vehicle-treated controls and the memory-enhancing effect induced by the 16mg/kg caffeine dose in non-stress condition is no longer observed. Interestingly, whereas caffeine-treated mice exhibited weaker concentrations of plasma corticosterone as compared to vehicles in non-stress condition, stress significantly increased plasma corticosterone concentrations in caffeine-treated mice which reached similar level to that of controls. Overall, the acute stress blocked both the endocrinological and memory retrieval enhancing effects of caffeine.


Subject(s)
Behavior, Animal/drug effects , Caffeine/pharmacology , Cognition/drug effects , Cues , Memory/drug effects , Stress, Psychological/psychology , Acute Disease , Animals , Corticosterone/blood , Discrimination, Psychological/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Electroshock , Male , Maze Learning/drug effects , Mice, Inbred C57BL , Motor Activity/drug effects , Stress, Psychological/blood , Stress, Psychological/etiology , Time Factors
20.
Front Aging Neurosci ; 7: 245, 2015.
Article in English | MEDLINE | ID: mdl-26793098

ABSTRACT

Increasing evidence suggests that abnormal brain accumulation of soluble rather than aggregated amyloid-ß1-42 oligomers (Aßo(1-42)) plays a causal role in Alzheimer's disease (AD). However, as yet, animal's models of AD based on oligomeric amyloid-ß1-42 injections in the brain have not investigated their long-lasting impacts on molecular and cognitive functions. In addition, the injections have been most often performed in ventricles, but not in the hippocampus, in spite of the fact that the hippocampus is importantly involved in memory processes and is strongly and precociously affected during the early stages of AD. Thus, in the present study, we investigated the long-lasting impacts of intra-hippocampal injections of oligomeric forms of Aßo(1-42) on working and spatial memory and on the related activation of ERK1/2. Indeed, the extracellular signal-regulated kinase (ERK) which is involved in memory function had been found to be activated by amyloid peptides. We found that repeated bilateral injections (1injection/day over 4 successive days) of oligomeric forms of Aßo(1-42) into the dorsal hippocampus lead to long-lasting impairments in two working memory tasks, these deficits being observed 7 days after the last injection, while spatial memory remained unaffected. Moreover, the working memory deficits were correlated with sustained impairments of ERK1/2 activation in the medial prefrontal cortex (mPFC) and the septum, two brain areas tightly connected with the hippocampus and involved in working memory. Thus, our study is first to evidence that sub-chronic injections of oligomeric forms of Aßo(1-42) into the dorsal hippocampus produces the main sign of cognitive impairments corresponding to the early stages of AD, via long-lasting alterations of an ERK/MAPK pathway in an interconnected brain networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...