Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 42(1): 132-138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37231263

ABSTRACT

We present avidity sequencing, a sequencing chemistry that separately optimizes the processes of stepping along a DNA template and that of identifying each nucleotide within the template. Nucleotide identification uses multivalent nucleotide ligands on dye-labeled cores to form polymerase-polymer-nucleotide complexes bound to clonal copies of DNA targets. These polymer-nucleotide substrates, termed avidites, decrease the required concentration of reporting nucleotides from micromolar to nanomolar and yield negligible dissociation rates. Avidity sequencing achieves high accuracy, with 96.2% and 85.4% of base calls having an average of one error per 1,000 and 10,000 base pairs, respectively. We show that the average error rate of avidity sequencing remained stable following a long homopolymer.


Subject(s)
DNA , Nucleotides , Nucleotides/genetics , Nucleotides/chemistry , DNA/genetics , DNA/chemistry , DNA Replication , Base Pairing , Polymers
2.
Biotechniques ; 67(5): 210-217, 2019 11.
Article in English | MEDLINE | ID: mdl-31657229

ABSTRACT

New technologies have powered rapid advances in cellular imaging, genomics and phenotypic analysis in life sciences. However, most of these methods operate at sample population levels and provide statistical averages of aggregated data that fail to capture single-cell heterogeneity, complicating drug discovery and development. Here we demonstrate a new single-cell approach based on convex lens-induced confinement (CLiC) microscopy. We validated CLiC on yeast cells, demonstrating subcellular localization with an enhanced signal-to-noise and fluorescent signal detection sensitivity compared with traditional imaging. In the live-cell CLiC assay, cellular proliferation times were consistent with flask culture. Using methotrexate, we provide drug response data showing a fivefold cell size increase following drug exposure. Taken together, CLiC enables high-quality imaging of single-cell drug response and proliferation for extended observation periods.


Subject(s)
Drug Development/methods , Microscopy/methods , Single-Cell Analysis/methods , Cell Proliferation/physiology , Fluorescence , Genomics/methods , Lenses , Signal-To-Noise Ratio , Yeasts/physiology
3.
Biomicrofluidics ; 12(5): 054107, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30344834

ABSTRACT

Convex Lens-induced Confinement (CLiC) is a single-molecule imaging technique that uses a deformable glass flow cell to gently trap, manipulate, and visualize single molecules within micro- and nano-structures, to enable a wide range of applications. Here, we miniaturize the CLiC flow cell, from 25 × 25 to 3 × 3 mm 2 and introduce pneumatic control of the confinement. Miniaturization of the flow cell improves fabrication throughput by almost two orders of magnitude and, advantageous for pharmaceutical and diagnostic applications where samples are precious, significantly lowers the internal volume from microliters to nanoliters. Pneumatic control of the device reduces the confinement gradient and improves mechanical stability while maintaining low autofluorescence and refractive index-matching with oil-immersion objectives. To demonstrate our "mini CLiC" system, we confine and image DNA in sub-50 nm nanogrooves, with high DNA extension consistent with the Odijk confinement regime.

4.
Nucleic Acids Res ; 46(9): 4622-4631, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29684182

ABSTRACT

We directly visualize the topology-mediated interactions between an unwinding site on a supercoiled DNA plasmid and a specific probe molecule designed to bind to this site, as a function of DNA supercoiling and temperature. The visualization relies on containing the DNA molecules within an enclosed array of glass nanopits using the Convex Lens-induced Confinement (CLiC) imaging method. This method traps molecules within the focal plane while excluding signal from out-of-focus probes. Simultaneously, the molecules can freely diffuse within the nanopits, allowing for accurate measurements of exchange rates, unlike other methods which could introduce an artifactual bias in measurements of binding kinetics. We demonstrate that the plasmid's structure influences the binding of the fluorescent probes to the unwinding site through the presence, or lack, of other secondary structures. With this method, we observe an increase in the binding rate of the fluorescent probe to the unwinding site with increasing temperature and negative supercoiling. This increase in binding is consistent with the results of our numerical simulations of the probability of site-unwinding. The temperature dependence of the binding rate has allowed us to distinguish the effects of competing higher order DNA structures, such as Z-DNA, in modulating local site-unwinding, and therefore binding.


Subject(s)
DNA, Superhelical/chemistry , DNA Topoisomerases, Type I/metabolism , Kinetics , Microscopy, Fluorescence , Oligonucleotide Probes/chemistry , Plasmids/genetics , Temperature
5.
Anal Chem ; 88(22): 11100-11107, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27767294

ABSTRACT

We present a dynamically adjustable nanofluidic platform for formatting the conformations of and visualizing the interaction kinetics between biomolecules in solution, offering new time resolution and control of the reaction processes. This platform extends convex lens-induced confinement (CLiC), a technique for imaging molecules under confinement, by introducing a system for in situ modification of the chemical environment; this system uses a deep microchannel to diffusively exchange reagents within the nanoscale imaging region, whose height is fixed by a nanopost array. To illustrate, we visualize and manipulate salt-induced, surfactant-induced, and enzyme-induced reactions between small-molecule reagents and DNA molecules, where the conformations of the DNA molecules are formatted by the imposed nanoscale confinement. In response to dynamically modifying the local salt concentration, we report two salt-induced transitions in DNA molecules which occur on separate time scales: a rapid change in polymer extension due to modified local ionic screening and a gradual change in polymer brightness, reflecting release of intercalated YOYO-1 dye. Our time-resolved measurements provide new insights into the influence of YOYO-1 dye on polymer stiffness. In response to introducing cationic surfactants in solution, we temporally resolve single-molecule compaction trajectories of DNA polymers, guided by the confining nanogroove environment; this is in contrast to the uncontrolled collapse which would occur in free solution under similar conditions. In the presence of restriction enzymes, we directly visualize the cleavage of multiple DNA sites under adjustable nanoscale confinement. By using nanofabricated, nonabsorbing, low-background glass walls to confine biomolecules, our nanofluidic platform facilitates quantitative exploration of physiologically and biotechnologically relevant processes at the nanoscale. This device provides new kinetic information about dynamic chemical processes at the single-molecule level, using advancements in the CLiC design including a microchannel-based diffuser and postarray-based dialysis slit.

6.
Biotechniques ; 61(2): 73-82, 2016.
Article in English | MEDLINE | ID: mdl-27528072

ABSTRACT

Here we present a high-throughput, parallelized cytoindentor for local compression of live cells. The cytoindentor uses convex lens-induced confinement (CLiC) to indent micrometer-sized areas in single cells and/or populations of cells with submicron precision. This is accomplished using micropatterned poly(dimethylsiloxane) (PDMS) films that are adhered to a convex lens to create arrays of extrusions referred to here as "posts." These posts caused local deformation of subcellular regions without any evidence of cell lysis upon CLiC indentation. Our micropost arrays were also functionalized with glycoproteins, such as fibronectin, to both pull and compress cells under customized confinement geometries. Measurements of Chinese hamster ovary (CHO-K1) cell migration trajectories and oxidative stress showed that the CLiC device did not damage or significantly stress the cells. Our novel tool opens a new area of investigation for visualizing mechanobiology and mechanochemistry within living cells, and the high-throughput nature of the technique will streamline investigations as current tools for mechanically probing material properties and molecular dynamics within cells, such as traditional cytoindentors and atomic force microscopy (AFM), are typically restricted to single-cell manipulation.


Subject(s)
Cytological Techniques/instrumentation , Cytological Techniques/methods , Microscopy, Confocal/methods , Animals , Biomechanical Phenomena/physiology , CHO Cells , Cell Physiological Phenomena/physiology , Cricetinae , Cricetulus , Dimethylpolysiloxanes/chemistry , Equipment Design , High-Throughput Screening Assays/instrumentation , Microtechnology/instrumentation , Surface Properties
7.
Lab Chip ; 15(14): 3013-20, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26062011

ABSTRACT

We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the flow-cell dimensions using the CLIC method was coupled with a flow-control mechanism for achieving efficient cell trapping, buffer exchange, and loading of long DNA molecules into nanofluidic arrays. Finite element simulation of fluid flow gives rise to optimized design parameters for overcoming the high hydraulic resistance present in the micro/nano-confinement region. By tuning design parameters such as the pressure gradient and CLIC confinement, an efficient on-chip single cell analysis protocol can be obtained. We demonstrate that we can extract Mbp long genomic DNA molecules from a single human lybphoblastoid cell and stretch these molecules in the nanochannels for optical interrogation.


Subject(s)
DNA/genetics , Genomics , Lenses , Microfluidic Analytical Techniques , Nanotechnology , Single-Cell Analysis , Cells, Cultured , Humans , Microfluidic Analytical Techniques/instrumentation , Nanotechnology/instrumentation , Single-Cell Analysis/instrumentation
8.
Rev Sci Instrum ; 86(3): 033701, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832232

ABSTRACT

We present the design and construction of a versatile, open frame inverted microscope system for wide-field fluorescence and single molecule imaging. The microscope chassis and modular design allow for customization, expansion, and experimental flexibility. We present two components which are included with the microscope which extend its basic capabilities and together create a powerful microscopy system: A Convex Lens-induced Confinement device provides the system with single-molecule imaging capabilities, and a two-color imaging system provides the option of imaging multiple molecular species simultaneously. The flexibility of the open-framed chassis combined with accessible single-molecule, multi-species imaging technology supports a wide range of new measurements in the health, nanotechnology, and materials science research sectors.


Subject(s)
Microscopy/instrumentation , Molecular Imaging/instrumentation , Optical Imaging/instrumentation , Bacteriophage lambda/genetics , DNA, Viral/chemistry , Diffusion , Equipment Design , Fluorescence Resonance Energy Transfer/instrumentation , Fluorescent Dyes , Lasers , Oligonucleotides/chemistry , Photobleaching , Polyethylene Glycols , Solutions , Streptavidin/chemistry
9.
Proc Natl Acad Sci U S A ; 111(37): 13295-300, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25092333

ABSTRACT

We demonstrate a new platform, convex lens-induced nanoscale templating (CLINT), for dynamic manipulation and trapping of single DNA molecules. In the CLINT technique, the curved surface of a convex lens is used to deform a flexible coverslip above a substrate containing embedded nanotopography, creating a nanoscale gap that can be adjusted during an experiment to confine molecules within the embedded nanostructures. Critically, CLINT has the capability of transforming a macroscale flow cell into a nanofluidic device without the need for permanent direct bonding, thus simplifying sample loading, providing greater accessibility of the surface for functionalization, and enabling dynamic manipulation of confinement during device operation. Moreover, as DNA molecules present in the gap are driven into the embedded topography from above, CLINT eliminates the need for the high pressures or electric fields required to load DNA into direct-bonded nanofluidic devices. To demonstrate the versatility of CLINT, we confine DNA to nanogroove and nanopit structures, demonstrating DNA nanochannel-based stretching, denaturation mapping, and partitioning/trapping of single molecules in multiple embedded cavities. In particular, using ionic strengths that are in line with typical biological buffers, we have successfully extended DNA in sub-30-nm nanochannels, achieving high stretching (90%) that is in good agreement with Odijk deflection theory, and we have mapped genomic features using denaturation analysis.


Subject(s)
Lenses , Nanostructures/chemistry , Nanotechnology/methods , DNA/chemistry , Imaging, Three-Dimensional , Nucleic Acid Denaturation
10.
Rev Sci Instrum ; 84(10): 103704, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24182116

ABSTRACT

We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.


Subject(s)
Lenses , Microscopy/instrumentation , Bacteriophage lambda , DNA, Viral/metabolism , Diffusion , Equipment Design , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...