Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Neural Regen Res ; 19(4): 895-899, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37843226

ABSTRACT

Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrè syndrome, mostly related to halted axon regeneration. Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration. These effects involve the activation of the small GTPase RhoA/ROCK signaling pathways, which negatively modulate growth cone cytoskeleton, similarly to well stablished inhibitors of axon regeneration described so far. The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632, a selective pharmacological inhibitor of ROCK, in a mouse model of axon regeneration of peripheral nerves, where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers. Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632. Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity. In contrast, the same dose showed toxic effects on the regeneration of myelinated fibers. Interestingly, scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632. Overall, these findings confirm the in vivo participation of RhoA/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody. Our findings open the possibility of therapeutic pharmacological intervention targeting RhoA/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system.

2.
J Neuromuscul Dis ; 9(2): 225-235, 2022.
Article in English | MEDLINE | ID: mdl-35094997

ABSTRACT

Defects in the replication, maintenance, and repair of mitochondrial DNA (mtDNA) constitute a growing and genetically heterogeneous group of mitochondrial disorders. Multiple genes participate in these processes, including thymidine kinase 2 (TK2) encoding the mitochondrial matrix protein TK2, a critical component of the mitochondrial nucleotide salvage pathway. TK2 deficiency (TK2d) causes mtDNA depletion, multiple deletions, or both, which manifest predominantly as mitochondrial myopathy. A wide clinical spectrum phenotype includes a severe, rapidly progressive, early onset form (median survival: < 2 years); a less severe childhood-onset form; and a late-onset form with a variably slower rate of progression. Clinical presentation typically includes progressive weakness of limb, neck, facial, oropharyngeal, and respiratory muscle, whereas limb myopathy with ptosis, ophthalmoparesis, and respiratory involvement is more common in the late-onset form. Deoxynucleoside monophosphates and deoxynucleosides that can bypass the TK2 enzyme defect have been assessed in a mouse model, as well as under open-label compassionate use (expanded access) in TK2d patients, indicating clinical efficacy with a favorable side-effect profile. This treatment is currently undergoing testing in clinical trials intended to support approval in the US and European Union (EU). In the early expanded access program, growth differentiation factor 15 (GDF-15) appears to be a useful biomarker that correlates with therapeutic response. With the advent of a specific treatment and given the high morbidity and mortality associated with TK2d, clinicians need to know how to recognize and diagnose this disorder. Here, we summarize translational research about this rare condition emphasizing clinical aspects.


Subject(s)
Mitochondrial Myopathies , Muscular Diseases , Animals , Child , DNA, Mitochondrial/genetics , Humans , Mice , Muscular Diseases/genetics , Thymidine Kinase/genetics , Thymidine Kinase/metabolism
3.
J Inherit Metab Dis ; 44(2): 292-300, 2021 03.
Article in English | MEDLINE | ID: mdl-33368420

ABSTRACT

At present, there is just one approved therapy for patients with mitochondrial diseases in Europe, another in Japan, and none in the United States. These facts reveal an important and significant unmet need for approved therapies for these debilitating and often fatal disorders. To fill this need, it is critical for clinicians and drug developers to work closely with regulatory agencies. In the United States, mitochondrial disease patients and clinicians, the United Mitochondrial Disease Foundation, and pharmaceutical industry members have engaged with the Food and Drug Administration to educate each other about these complex and heterogeneous diseases and about regulatory requirements to obtain approvals for novel therapies. Clinical development of therapies for rare diseases has been facilitated by the 1983 US Orphan Drug Act (ODA) and similar legislation in Japan and the European Union. Further legislation and regulatory guidance have expanded and refined regulatory flexibility. While regulatory and financial incentives of the ODA have augmented involvement of pharmaceutical companies, clinicians, with patient advocacy groups and industry, need to conduct natural history studies, develop clinical outcome measures, and identify potential supportive surrogate endpoints predictive of clinical benefit, which together are critical foundations for clinical trials. Thus, the regulatory environment for novel therapeutic development is conducive and offers flexibility for mitochondrial diseases. Nevertheless, flexibility does not mean lower standards, as well-controlled rigorous clinical trials of high quality are still required to establish the efficacy of potential therapies and to obtain regulatory agency approvals for their commercial use. This process is illustrated through the authors' ongoing efforts to develop therapy for thymidine kinase 2 deficiency.


Subject(s)
Mitochondrial Diseases/drug therapy , Orphan Drug Production/legislation & jurisprudence , Drug Approval , Humans , Rare Diseases/drug therapy , United States , United States Food and Drug Administration
4.
Sci Rep ; 10(1): 10111, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572108

ABSTRACT

GDF-15 is a biomarker for mitochondrial diseases. We investigated the application of GDF-15 as biomarker of disease severity and response to deoxynucleoside treatment in patients with thymidine kinase 2 (TK2) deficiency and compared it to FGF-21. GDF-15 and FGF-21 were measured in serum from 24 patients with TK2 deficiency treated 1-49 months with oral deoxynucleosides. Patients were grouped according to age at treatment and biomarkers were analyzed at baseline and various time points after treatment initiation. GDF-15 was elevated on average 30-fold in children and 6-fold in adults before the start of treatment. There was a significant correlation between basal GDF-15 and severity based on pretreatment distance walked (6MWT) and weight (BMI). During treatment, GDF-15 significantly declined, and the decrease was accompanied by relevant clinical improvements. The decline was greater in the paediatric group, which included the most severe patients and showed the greatest clinical benefit, than in the adult patients. The decline of FGF-21 was less prominent and consistent. GDF-15 is a potential biomarker of severity and of therapeutic response for patients with TK2 deficiency. In addition, we show evidence of clinical benefit of deoxynucleoside treatment, especially when treatment is initiated at an early age.


Subject(s)
Growth Differentiation Factor 15/metabolism , Thymidine Kinase/deficiency , Adult , Aged , Biomarkers/blood , Child , Child, Preschool , DNA, Mitochondrial , Female , Fibroblast Growth Factors , Growth Differentiation Factor 15/blood , Growth Differentiation Factor 15/physiology , Humans , Infant , Male , Middle Aged , Mitochondrial Diseases/blood , Muscle, Skeletal , Muscular Diseases/metabolism , Prognosis , Thymidine Kinase/metabolism
5.
J Transl Genet Genom ; 4: 22-35, 2020.
Article in English | MEDLINE | ID: mdl-33426503

ABSTRACT

Primary coenzyme Q10 (CoQ10) deficiency encompasses a subset of mitochondrial diseases caused by mutations affecting proteins involved in the CoQ10 biosynthetic pathway. One of the most frequent clinical syndromes associated with primary CoQ10 deficiency is the severe infantile multisystemic form, which, until recently, was underdiagnosed. In the last few years, the availability of genetic screening through whole exome sequencing and whole genome sequencing has enabled molecular diagnosis in a growing number of patients with this syndrome and has revealed new disease phenotypes and molecular defects in CoQ10 biosynthetic pathway genes. Early genetic screening can rapidly and non-invasively diagnose primary CoQ10 deficiencies. Early diagnosis is particularly important in cases of CoQ10 deficient steroid-resistant nephrotic syndrome, which frequently improves with treatment. In contrast, the infantile multisystemic forms of CoQ10 deficiency, particularly when manifesting with encephalopathy, present therapeutic challenges, due to poor responses to CoQ10 supplementation. Administration of CoQ10 biosynthetic intermediate compounds is a promising alternative to CoQ10; however, further pre-clinical studies are needed to establish their safety and efficacy, as well as to elucidate the mechanism of actions of the intermediates. Here, we review the molecular defects causes of the multisystemic infantile phenotype of primary CoQ10 deficiency, genotype-phenotype correlations, and recent therapeutic advances.

6.
J Neurol ; 267(3): 823-829, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31776719

ABSTRACT

Leber hereditary optic neuropathy (LHON) typically presents as painless central or centrocecal scotoma and is due to maternally inherited mitochondrial DNA (mtDNA) mutations. Over 95% of LHON cases are caused by one of three mtDNA "common" point mutations: m.3460G>A, m.11778G>A, or m.14484T>C, which are all in genes encoding structural subunits of complex I of the respiratory chain. Intriguing features of LHON include: incomplete penetrance, tissue specificity, and male predominance, indicating that additional genetic or environmental factors are modulating the phenotypic expression of the pathogenic mtDNA mutations. However, since its original description as a purely ophthalmological disorder, LHON has also been linked to multisystemic conditions with variable neurological, cardiac, and skeletal abnormalities. Although double "common" mutations have been reported to cause LHON and LHON-plus, they are extremely rare. Here, we present a patient with an unusual double point mutation (m.11778 G>A and m.14484T>C) with a multisystemic LHON-plus phenotype characterized by: optic neuropathy, ptosis, ataxia, dystonia, dysarthria, and recurrent extensive transverse myelitis.


Subject(s)
Dystonia/genetics , Dystonia/pathology , Myelitis, Transverse/pathology , NADH Dehydrogenase/genetics , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , Adult , Humans , Male , Myelitis, Transverse/etiology , Point Mutation
7.
J Neurol ; 266(10): 2524-2534, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31267206

ABSTRACT

Autosomal dominant limb girdle muscular dystrophy D3 HNRNPDL-related is a rare dominant myopathy caused by mutations in HNRNPDL. Only three unrelated families have been described worldwide, a Brazilian and a Chinese carrying the mutation c.1132G>A p.(Asp378Asn), and one Uruguayan with the mutation c.1132G>C p. (Asp378His), both mutations occurring in the same codon. The present study enlarges the clinical, morphological and muscle MRI spectrum of AD-HNRNPDL-related myopathies demonstrating the significant particularities of the disease. We describe two new unrelated Argentinean families, carrying the previously reported c.1132G>C p.(Asp378His) HNRNPDL mutation. There was a wide phenotypic spectrum including oligo-symptomatic cases, pure limb girdle muscle involvement or distal lower limb muscle weakness. Scapular winging was the most common finding, observed in all patients. Muscle MRIs of the thigh, at different stages of the disease, showed particular involvement of adductor magnus and vastus besides a constant preservation of the rectus femoris and the adductor longus muscles, defining a novel MRI pattern. Muscle biopsy findings were characterized by the presence of numerous rimmed vacuoles, cytoplasmic bodies, and abundant autophagic material at the histochemistry and ultrastructural levels. HNRNPDL-related LGMD D3 results in a wide range of clinical phenotypes from the classic proximal form of LGMD to a more distal phenotype. Thigh MRI suggests a specific pattern. Codon 378 of HNRNPDL gene can be considered a mutation hotspot for HNRNPDL-related myopathy. Pathologically, the disease can be classified among the autophagic rimmed vacuolar myopathies as with the other multisystem proteinopathies.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein D/genetics , Muscular Dystrophies, Limb-Girdle , Aged , Argentina , Female , Heterogeneous Nuclear Ribonucleoprotein D0 , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Muscular Dystrophies, Limb-Girdle/physiopathology , Mutation , Pedigree , Phenotype
8.
J Neurol ; 266(3): 680-690, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30666435

ABSTRACT

OBJECTIVE: Hereditary myopathy with early respiratory failure (HMERF) is caused by titin A-band mutations in exon 344 and considered quite rare. Respiratory insufficiency is an early symptom. A collection of families and patients with muscle disease suggestive of HMERF was clinically and genetically studied. METHODS: Altogether 12 new families with 19 affected patients and diverse nationalities were studied. Most of the patients were investigated using targeted next-generation sequencing; Sanger sequencing was applied in some of the patients and available family members. Histological data and muscle MRI findings were evaluated. RESULTS: Three families had several family members studied while the rest were single patients. Most patients had distal and proximal muscle weakness together with respiratory insufficiency. Five heterozygous TTN A-band mutations were identified of which two were novel. Also with the novel mutations the muscle pathology and imaging findings were compatible with the previous reports of HMERF. CONCLUSIONS: Our collection of 12 new families expands mutational spectrum with two new mutations identified. HMERF is not that rare and can be found worldwide, but maybe underdiagnosed. Diagnostic process seems to be complex as this study shows with mostly single patients without clear dominant family history.


Subject(s)
Connectin/genetics , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/physiopathology , Muscular Diseases/genetics , Muscular Diseases/physiopathology , Respiratory Insufficiency/genetics , Respiratory Insufficiency/physiopathology , Adult , Age of Onset , Female , Genetic Diseases, Inborn/diagnostic imaging , Genetic Diseases, Inborn/pathology , Humans , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/diagnostic imaging , Muscular Diseases/pathology , Mutation , Pedigree , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/pathology , Young Adult
9.
Medicina (B Aires) ; 78 Suppl 1: 1-23, 2018.
Article in Spanish | MEDLINE | ID: mdl-30179846

ABSTRACT

Pompe's disease (PD) is an infrequent metabolic autosomic recessive disorder produced by the lack or deficiency of the acid alpha-glucosidase lysosomal enzyme in tissues of involved individuals. Delayed-onset PD is considered whenever symptoms onset start after one year of age. We present an update of the recommendations for the management of delayed-onset PD, taking as reference the guidelines from the Argentine Consensus for diagnosis, treatment and follow-up of PD published in 2013. The present consensus gathered several experts in PD in the areas of internal medicine, laboratory diagnosis, neuropathology, pulmonology, nutrition, neurology, metabolic and neuromuscular disorders as well as rehabilitation to perform an update of the literature of delayed-onset PD, with special attention on relevant information published within the last 4 years. The entire working group approved the final version of the consensus. Each participant provided a declaration of conflict of interest. As a result, it is an update of the previous Argentine PD Consensus with focus on the delayed-onset presentation of the disease. Being such infrequent disorder, available data were rather limited and thus, the recommendations represent expert opinions.


Subject(s)
Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/therapy , Age of Onset , Argentina , Expert Testimony , Glycogen Storage Disease Type II/complications , Humans
10.
Medicina (B.Aires) ; 78(supl.1): 1-23, ago. 2018. ilus, tab
Article in Spanish | LILACS | ID: biblio-955004

ABSTRACT

La enfermedad de Pompe (EP) es un desorden metabólico autosómico recesivo infrecuente, producido por la ausencia o deficiencia de la enzima lisosomal alfa-glucosidasa ácida en los tejidos de los individuos afectados. Se considera enfermedad de Pompe de inicio tardío (EPIT) en aquellos individuos de más de un año de edad al comienzo de los síntomas. El objetivo del presente consenso es el de actualizar las pautas y recomendaciones para un correcto tratamiento de los pacientes con EPIT, tomando como referencia los lineamientos del Consenso Argentino para el diagnóstico, seguimiento y tratamiento de la enfermedad de Pompe publicado en el año 2013. Se organizó un consenso que reunió profesionales con experiencia en la EP en las áreas de clínica médica, diagnóstico de laboratorio, neuropatología, neumonología, nutrición, neurología, enfermedades metabólicas, enfermedades neuromusculares y rehabilitación. Se realizó una actualización de la bibliografía sobre EPIT, con especial atención en las publicaciones relevantes de los últimos cuatro años. Los términos finales del documento fueron consensuados por todo el grupo de trabajo. Cada participante proporcionó su declaración de conflicto de intereses. El resultado es una actualización del último Consenso Argentino para la EP, con particular enfoque en su forma de comienzo tardío. Tratándose de una afección infrecuente, en la que los datos disponibles son limitados, las presentes recomendaciones deben ser consideradas como opinión de expertos.


Pompe's disease (PD) is an infrequent metabolic autosomic recessive disorder produced by the lack or deficiency of the acid alpha-glucosidase lysosomal enzyme in tissues of involved individuals. Delayed-onset PD is considered whenever symptoms onset start after one year of age. We present an update of the recommendations for the management of delayed-onset PD, taking as reference the guidelines from the Argentine Consensus for diagnosis, treatment and follow-up of PD published in 2013. The present consensus gathered several experts in PD in the areas of internal medicine, laboratory diagnosis, neuropathology, pulmonology, nutrition, neurology, metabolic and neuromuscular disorders as well as rehabilitation to perform an update of the literature of delayed-onset PD, with special attention on relevant information published within the last 4 years. The entire working group approved the final version of the consensus. Each participant provided a declaration of conflict of interest. As a result, it is an update of the previous Argentine PD Consensus with focus on the delayed-onset presentation of the disease. Being such infrequent disorder, available data were rather limited and thus, the recommendations represent expert opinions.


Subject(s)
Humans , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/therapy , Argentina , Glycogen Storage Disease Type II/complications , Age of Onset , Expert Testimony
11.
J Neurol ; 263(11): 2278-2286, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27544499

ABSTRACT

Complex hereditary spastic paraplegia (HSP) is a clinically heterogeneous group of disorders usually inherited in an autosomal recessive manner. In the past, complex recessive spastic paraplegias have been frequently associated with SPG11 mutations but also with defects in SPG15, SPG7 and a handful of other rare genes. Pleiotropy exists in HSP genes, exemplified in the recent association of SPG11 mutations with CMT2. In this study, we performed whole exome sequence analysis and identified two siblings with novel compound heterozygous frameshift SPG11 mutations. The mutations segregated with disease were not present in control databases and analysis of skin fibroblast derived mRNA indicated that the SPG11 truncated mRNA species were not degraded significantly by non-sense mediated mRNA decay. These siblings had severe early-onset spastic paraplegia but later in their disease developed severe axonal neuropathy, neuropathic pain and blue/black foot discolouration likely caused by a combination of the severe neuropathy with autonomic dysfunction and peripheral oedema. We also identified a similar late-onset axonal neuropathy in a Cypriot SPG11 family. Although neuropathy is occasionally present in SPG11, in our SPG11 patients reported here it was particularly severe, highlighting the association of axonal neuropathy with SPG11 and the late manifestation of axonal peripheral nerve damage.


Subject(s)
Polyneuropathies/physiopathology , Proteins/genetics , Spastic Paraplegia, Hereditary/physiopathology , Adolescent , Brain/physiopathology , DNA Mutational Analysis , Electromyography , Family Health , Female , Humans , Magnetic Resonance Imaging , Neural Conduction , Peripheral Nerves/physiopathology , Polyneuropathies/genetics , Spastic Paraplegia, Hereditary/genetics , Young Adult
12.
Exp Neurol ; 278: 42-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26804001

ABSTRACT

Several reports have linked the presence of high titers of anti-Gg Abs with delayed recovery/poor prognosis in GBS. In most cases, failure to recover is associated with halted/deficient axon regeneration. Previous work identified that monoclonal and patient-derived anti-Gg Abs can act as inhibitory factors in an animal model of axon regeneration. Further studies using primary dorsal root ganglion neuron (DRGn) cultures demonstrated that anti-Gg Abs can inhibit neurite outgrowth by targeting gangliosides via activation of the small GTPase RhoA and its associated kinase (ROCK), a signaling pathway common to other established inhibitors of axon regeneration. We aimed to study the molecular basis of the inhibitory effect of anti-Gg abs on neurite outgrowth by dissecting the molecular dynamics of growth cones (GC) cytoskeleton in relation to the spatial-temporal analysis of RhoA activity. We now report that axon growth inhibition in DRGn induced by a well characterized mAb targeting gangliosides GD1a/GT1b involves: i) an early RhoA/ROCK-independent collapse of lamellipodia; ii) a RhoA/ROCK-dependent shrinking of filopodia; and iii) alteration of GC microtubule organization/and presumably dynamics via RhoA/ROCK-dependent phosphorylation of CRMP-2 at threonine 555. Our results also show that mAb 1B7 inhibits peripheral axon regeneration in an animal model via phosphorylation/inactivation of CRMP-2 at threonine 555. Overall, our data may help to explain the molecular mechanisms underlying impaired nerve repair in GBS. Future work should define RhoA-independent pathway/s and effectors regulating actin cytoskeleton, thus providing an opportunity for the design of a successful therapy to guarantee an efficient target reinnervation.


Subject(s)
Antibodies/pharmacology , Microtubules/pathology , Nerve Regeneration/drug effects , Nerve Tissue Proteins/metabolism , Neurons/cytology , Polysaccharides/immunology , rhoA GTP-Binding Protein/metabolism , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Ganglia, Spinal/cytology , Gene Expression Regulation/drug effects , Intercellular Signaling Peptides and Proteins , Microtubules/drug effects , Nerve Regeneration/physiology , Neurites/drug effects , Neurites/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Wistar , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/pathology , Signal Transduction
13.
J Neurol Neurosurg Psychiatry ; 85(3): 345-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23606733

ABSTRACT

OBJECTIVE: Several families with characteristic features of hereditary myopathy with early respiratory failure (HMERF) have remained without genetic cause. This international study was initiated to clarify epidemiology and the genetic underlying cause in these families, and to characterise the phenotype in our large cohort. METHODS: DNA samples of all currently known families with HMERF without molecular genetic cause were obtained from 12 families in seven different countries. Clinical, histopathological and muscle imaging data were collected and five biopsy samples made available for further immunohistochemical studies. Genotyping, exome sequencing and Sanger sequencing were used to identify and confirm sequence variations. RESULTS: All patients with clinical diagnosis of HMERF were genetically solved by five different titin mutations identified. One mutation has been reported while four are novel, all located exclusively in the FN3 119 domain (A150) of A-band titin. One of the new mutations showed semirecessive inheritance pattern with subclinical myopathy in the heterozygous parents. Typical clinical features were respiratory failure at mid-adulthood in an ambulant patient with very variable degree of muscle weakness. Cytoplasmic bodies were retrospectively observed in all muscle biopsy samples and these were reactive for myofibrillar proteins but not for titin. CONCLUSIONS: We report an extensive collection of families with HMERF with five different mutations in exon 343 of TTN, which establishes this exon as the primary target for molecular diagnosis of HMERF. Our relatively large number of new families and mutations directly implies that HMERF is not extremely rare, not restricted to Northern Europe and should be considered in undetermined myogenic respiratory failure.


Subject(s)
Genetic Diseases, Inborn/epidemiology , Muscular Diseases/epidemiology , Respiratory Insufficiency/epidemiology , Adult , Aged , Connectin/genetics , Exome/genetics , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Mutation/genetics , Pedigree , Phenotype , Respiratory Insufficiency/genetics , Respiratory Insufficiency/pathology
14.
Arch Neurol ; 69(8): 978-83, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22490322

ABSTRACT

Coenzyme Q(10) (CoQ(10)) deficiency has been associated with 5 major clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. Primary CoQ(10) deficiency is due to defects in CoQ(10) biosynthesis, while secondary forms are due to other causes. A review of 149 cases, including our cohort of 76 patients, confirms that CoQ(10) deficiency is a clinically and genetically heterogeneous syndrome that mainly begins in childhood and predominantly manifests as cerebellar ataxia. Coenzyme Q(10) measurement in muscle is the gold standard for diagnosis. Identification of CoQ(10) deficiency is important because the condition frequently responds to treatment. Causative mutations have been identified in a small proportion of patients.


Subject(s)
Genetic Heterogeneity , Ubiquinone/analogs & derivatives , Animals , Cerebellar Ataxia/genetics , Cerebellar Ataxia/therapy , Cohort Studies , Humans , Ubiquinone/biosynthesis , Ubiquinone/deficiency , Ubiquinone/therapeutic use
15.
Curr Neurol Neurosci Rep ; 10(2): 118-26, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20425236

ABSTRACT

Metabolic myopathies comprise a clinically and etiologically diverse group of disorders caused by defects in cellular energy metabolism, including the breakdown of carbohydrates and fatty acids to generate adenosine triphosphate, predominantly through mitochondrial oxidative phosphorylation. Accordingly, the three main categories of metabolic myopathies are glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders due to respiratory chain impairment. The wide clinical spectrum of metabolic myopathies ranges from severe infantile-onset multisystemic diseases to adult-onset isolated myopathies with exertional cramps. Diagnosing these diverse disorders often is challenging because clinical features such as recurrent myoglobinuria and exercise intolerance are common to all three types of metabolic myopathy. Nevertheless, distinct clinical manifestations are important to recognize as they can guide diagnostic testing and lead to the correct diagnosis. This article briefly reviews general clinical aspects of metabolic myopathies and highlights approaches to diagnosing the relatively more frequent subtypes (Fig. 1). Fig. 1 Clinical algorithm for patients with exercise intolerance in whom a metabolic myopathy is suspected. CK-creatine kinase; COX-cytochrome c oxidase; CPT-carnitine palmitoyl transferase; cyt b-cytochrome b; mtDNA-mitochondrial DNA; nDNA-nuclear DNA; PFK-phosphofructokinase; PGAM-phosphoglycerate mutase; PGK-phosphoglycerate kinase; PPL-myophosphorylase; RRF-ragged red fibers; TFP-trifunctional protein deficiency; VLCAD-very long-chain acyl-coenzyme A dehydrogenase.


Subject(s)
Algorithms , Models, Biological , Muscular Diseases/diagnosis , Muscular Diseases/metabolism , Glycogen/metabolism , Humans , Lipid Metabolism Disorders/complications , Metabolic Networks and Pathways , Metabolism, Inborn Errors/complications , Mitochondrial Diseases/complications , Muscular Diseases/etiology , Muscular Diseases/genetics
16.
Neuromuscul Disord ; 20(3): 204-6, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20149659

ABSTRACT

We describe a 62-year-old woman with chronic progressive external ophthalmoplegia (CPEO), multiple lipomas, diabetes mellitus, and a novel mitochondrial DNA (mtDNA) mutation at nucleotide 4302 (4302A>G) of the tRNA(Ile) gene (MTTI). This is the first mutation at position 44 in the variable loop (V loop) of any mitochondrial tRNA. The muscle biopsy revealed 10% ragged-red/ragged-blue fibers and 25% cytochrome c oxidase (COX)-deficient fibers. No deletions or duplications were detected by Southern blot analysis. The 4302A>G transition was present only in the patient's muscle and single-fiber analysis revealed significantly higher levels of the mutation in COX-deficient than in normal fibers. Like tRNA(Leu(UUR)), tRNA(Ile) appears to be a "hot spot" for mtDNA mutations causing CPEO.


Subject(s)
Mutation/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , RNA, Transfer, Ile/genetics , DNA Mutational Analysis , DNA, Mitochondrial/genetics , Electron Transport Complex IV/metabolism , Female , Humans , Middle Aged , Muscle Fibers, Skeletal/pathology , Ophthalmoplegia, Chronic Progressive External/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...