Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 22(19): 6173-80, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22959249

ABSTRACT

Analogs of SLV-319 (Ibipinibant), a CB1 receptor inverse agonist, were synthesized with functionality intended to limit brain exposure while maintaining the receptor affinity and selectivity of the parent compound. Structure activity relationships of this series, and pharmacology of two lead compounds, 16 (JD-5006) and 23 (JD-5037) showing little brain presence as indicated by tissue distribution and receptor occupancy studies, are described. Effects with one of these compounds on plasma triglyceride levels, liver weight and enzymes, glucose tolerance and insulin sensitivity support the approach that blockade of peripheral CB(1) receptors is sufficient to produce many of the beneficial metabolic effects of globally active CB(1) blockers. Thus, PR CB(1) inverse agonists may indeed represent a safer alternative to highly brain-penetrant agents for the treatment of metabolic disorders, including diabetes, liver diseases, dyslipidemias, and obesity.


Subject(s)
Amidines/pharmacology , Brain Diseases, Metabolic/drug therapy , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Amidines/chemical synthesis , Amidines/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Recombinant Proteins/agonists , Recombinant Proteins/antagonists & inhibitors , Structure-Activity Relationship , Sulfonamides
2.
Bioorg Med Chem Lett ; 21(16): 4836-43, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21741239

ABSTRACT

Structure-based design led to the discovery of a novel class of renin inhibitors in which an unprecedented phenyl ring filling the S1 site is attached to the phenyl ring filling the S3 pocket. Optimization for several parameters including potency in the presence of human plasma, selectivity against CYP3A4 inhibition and improved rat oral bioavailability led to the identification of 8d which demonstrated antihypertensive efficacy in a transgenic rat model of human hypertension.


Subject(s)
Antihypertensive Agents/pharmacology , Enzyme Inhibitors/pharmacology , Phenyl Ethers/pharmacology , Renin/antagonists & inhibitors , Animals , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/chemistry , Biological Availability , Crystallography, X-Ray , Cytochrome P-450 CYP3A/blood , Cytochrome P-450 CYP3A Inhibitors , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hypertension/drug therapy , Models, Molecular , Molecular Conformation , Phenyl Ethers/chemical synthesis , Phenyl Ethers/chemistry , Rats , Rats, Transgenic , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/isolation & purification , Stereoisomerism , Structure-Activity Relationship
3.
J Med Chem ; 54(17): 6050-62, 2011 Sep 08.
Article in English | MEDLINE | ID: mdl-21786805

ABSTRACT

Structure based design led directly to 1,3-oxazinan-2-one 9a with an IC(50) of 42 nM against 11ß-HSD1 in vitro. Optimization of 9a for improved in vitro enzymatic and cellular potency afforded 25f with IC(50) values of 0.8 nM for the enzyme and 2.5 nM in adipocytes. In addition, 25f has 94% oral bioavailability in rat and >1000× selectivity over 11ß-HSD2. In mice, 25f was distributed to the target tissues, liver, and adipose, and in cynomolgus monkeys a 10 mg/kg oral dose reduced cortisol production by 85% following a cortisone challenge.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Adipocytes/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Oxazines/chemistry , Adipocytes/cytology , Adipocytes/enzymology , Administration, Oral , Animals , CHO Cells , Cells, Cultured , Cortisone/pharmacology , Cricetinae , Cricetulus , Enzyme Inhibitors/pharmacokinetics , Humans , Macaca fascicularis , Mice , Rats , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tissue Distribution
4.
Bioorg Med Chem Lett ; 20(22): 6725-9, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20864344

ABSTRACT

Synthesis of 2-adamantyl carbamate derivatives of piperidines and pyrrolidines led to the discovery of 9a with an IC(50) of 15.2 nM against human 11ß-HSD1 in adipocytes. Optimization for increased adipocyte potency, metabolic stability and selectivity afforded 11k and 11l, both of which were >25% orally bioavailable in rat.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Adamantane/pharmacology , Enzyme Inhibitors/pharmacology , Adamantane/chemistry , Animals , Drug Discovery , Enzyme Inhibitors/chemistry , Models, Molecular , Rats
6.
Bioorg Med Chem Lett ; 20(2): 694-9, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19959358

ABSTRACT

Structure-guided drug design led to new alkylamine renin inhibitors with improved in vitro and in vivo potency. Lead compound 21a, has an IC(50) of 0.83nM for the inhibition of human renin in plasma (PRA). Oral administration of 21a at 10mg/kg resulted in >20h reduction of blood pressure in a double transgenic rat model of hypertension.


Subject(s)
Amines/chemistry , Carbamates/chemistry , Enzyme Inhibitors/chemistry , Piperidines/chemistry , Renin/antagonists & inhibitors , Administration, Oral , Amines/chemical synthesis , Amines/pharmacokinetics , Animals , Binding Sites , Blood Pressure/drug effects , Carbamates/chemical synthesis , Carbamates/pharmacokinetics , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Haplorhini , Humans , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Rats , Rats, Transgenic , Renin/blood , Renin/metabolism , Structure-Activity Relationship
8.
Anal Biochem ; 339(1): 121-8, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15766718

ABSTRACT

Peroxisome proliferator-activated receptor alpha (PPARalpha) is the nuclear receptor responsible for regulating genes that control lipid homeostasis. Because of this role, PPARalpha has become a target of interest for the development of drugs to treat diseases such as dyslipidemia, obesity, and atherosclerosis. Assays currently employed to determine potency and efficacy of potential drug candidates typically utilize a truncated form of the native receptor, one which lacks the entire N-terminal region of the protein. The amino terminus, containing the regions that encode the ligand-independent activation function AF-1 and DNA binding domains, is highly structured and contributes significantly to the overall tertiary structure of the native protein. We report that differences in PPARalpha full-length and ligand binding domain constructs result in differences in binding affinity for coactivator peptides but have little effect on potency of agonists in both cell-free and cell-based nuclear receptor assays.


Subject(s)
DNA-Binding Proteins/agonists , DNA-Binding Proteins/chemistry , PPAR alpha/agonists , PPAR alpha/chemistry , Binding Sites , Cell-Free System , Cells, Cultured , Humans , Kidney/metabolism , Ligands , Peptide Fragments/chemistry , Plasmids/metabolism , Transcriptional Activation
9.
Drug Metab Dispos ; 31(9): 1077-80, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12920160

ABSTRACT

CYP2D6 and CYP3A4 represent two particularly important members of the cytochrome p450 enzyme family due to their involvement in the metabolism of many commercially available drugs. Avoiding potent inhibitory interactions with both of these enzymes is highly desirable in early drug discovery, long before entering clinical trials. Computational prediction of this liability as early as possible is desired. Using a commercially available data set of over 1750 molecules to train computer models that were generated with commercially available software enabled predictions of inhibition for CYP2D6 and CYP3A4, which were compared with empirical data. The results suggest that using a recursive partitioning (tree) technique with augmented atom descriptors enables a statistically significant rank ordering of test-set molecules (Spearman's rho of 0.61 and 0.48 for CYP2D6 and CYP3A4, respectively), which represents an increased rate of identifying the best compounds when compared with the random rate. This approach represents a valuable computational filter in early drug discovery to identify compounds that may have p450 inhibition liabilities prior to molecule synthesis. Such computational filters offer a new approach in which lead optimization in silico can occur with virtual molecules simultaneously tested against multiple enzymes implicated in drug-drug interactions, with a resultant cost savings from a decreased level of molecule synthesis and in vitro screening.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors , Cytochrome P-450 CYP2D6/chemistry , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/chemistry , Models, Biological , Computational Biology , Coumarins/chemistry , Cytochrome P-450 CYP3A , Databases, Factual , Drug Design , Enzyme Inhibitors/chemistry , Humans , Quantitative Structure-Activity Relationship , Quaternary Ammonium Compounds/chemistry , Reproducibility of Results , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...