Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 68(14)2023 07 10.
Article in English | MEDLINE | ID: mdl-37343590

ABSTRACT

Objective. Megavoltage cone-beam computed tomography (MV-CBCT) imaging offers several advantages including reduced metal artifacts and accurate electron density mapping for adaptive or emergent situations. However, MV-CBCT imaging is limited by the poor efficiency of current detectors. Here we examine a new MV imager and compare CBCT reconstructions under clinically relevant scenarios.Approach. A multilayer imager (MLI), consisting of four vertically stacked standard flat-panel imagers, was mounted to a clinical linear accelerator. A custom anthropomorphic pelvis phantom with replaceable femoral heads was imaged using MV-CBCT and kilovoltage CBCT (kV-CBCT). Bone, aluminum, and titanium were used as femoral head inserts. 8 MU 2.5 MV scans were acquired for all four layers and (as reference) the top layer. Prostate and bladder were contoured on a reference CT and transferred to the other scans after rigid registration, from which the structural similarity index measure (SSIM) was calculated. Prostate and bladder were also contoured on CBCT scans without guidance, and Dice coefficients were compared to CT contours.Main results. kV-CBCT demonstrated the highest SSIMs with bone inserts (prostate: 0.86, bladder: 0.94) and lowest with titanium inserts (0.32, 0.37). Four-layer MV-CBCT SSIMs were preserved with bone (0.75, 0.80) as compared to titanium (0.67, 0.74), outperforming kV-CBCT when metal is present. One-layer MV-CBCT consistently underperformed four-layer results across all phantom configurations. Unilateral titanium inserts and bilateral aluminum insert results fell between the bone and bilateral titanium results. Dice coefficients trended similarly, with four-layer MV-CBCT reducing metal artifact impact relative to KV-CBCT to provide better soft-tissue identification.Significance. MV-CBCT with a four-layer MLI showed improvement over single-layer MV scans, approaching kV-CBCT quality for soft-tissue contrast. In the presence of artifact-producing metal implants, four-layer MV-CBCT scans outperformed kV-CBCT by eliminating artifacts and single-layer MV-CBCT by reducing noise. MV-CBCT with a novel multi-layer imager may be a valuable alternative to kV-CBCT, particularly in the presence of metal.


Subject(s)
Artifacts , Spiral Cone-Beam Computed Tomography , Titanium , Aluminum , Cone-Beam Computed Tomography/methods , Metals , Phantoms, Imaging
2.
Phys Med Biol ; 66(15)2021 07 20.
Article in English | MEDLINE | ID: mdl-34233309

ABSTRACT

Purpose.Electronic portal image devices (EPIDs) have been investigated previously for beams-eye view (BEV) applications such as tumor tracking but are limited by low contrast-to-noise ratio and detective quantum efficiency. A novel multilayer imager (MLI), consisting of four stacked flat-panels was used to measure improvements in fiducial tracking during liver stereotactic body radiation therapy (SBRT) procedures compared to a single layer EPID.Methods.The prototype MLI was installed on a clinical TrueBeam linac in place of the conventional DMI single-layer EPID. The panel was extended during volumetric modulated arc therapy SBRT treatments in order to passively acquire data during therapy. Images were acquired for six patients receiving SBRT to liver metastases over two fractions each, one with the MLI using all 4 layers and one with the MLI using the top layer only, representing a standard EPID. The acquired frames were processed by a previously published tracking algorithm modified to identify implanted radiopaque fiducials. Truth data was determined using respiratory traces combined with partial manual tracking. Results for 4- and 1-layer mode were compared against truth data for tracking accuracy and efficiency. Tracking and noise improvements as a function of gantry angle were determined.Results. Tracking efficiency with 4-layers improved to 82.8% versus 58.4% for the 1-layer mode, a relative improvement of 41.7%. Fiducial tracking with 1-layer returned a root mean square error (RMSE) of 2.1 mm compared to 4-layer RMSE of 1.5 mm, a statistically significant (p < 0.001) improvement of 0.6 mm. The reduction in noise correlated with an increase in successfully tracked frames (r = 0.913) and with increased tracking accuracy (0.927).Conclusion. Increases in MV photon detection efficiency by utilization of a MLI results in improved fiducial tracking for liver SBRT treatments. Future clinical applications utilizing BEV imaging may be enhanced by including similar noise reduction strategies.


Subject(s)
Particle Accelerators , Radiosurgery , Algorithms , Diagnostic Imaging , Fiducial Markers , Humans , Phantoms, Imaging
3.
Phys Med ; 31(5): 529-35, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25964129

ABSTRACT

PURPOSE: To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). METHODS AND MATERIALS: A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm(3)) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. RESULTS: Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. CONCLUSIONS: The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests.


Subject(s)
Cone-Beam Computed Tomography/instrumentation , Phantoms, Imaging , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Animals , Quality Control
4.
Med Phys ; 41(2): 021701, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24506592

ABSTRACT

PURPOSE: To investigate the potential of low-Z/low-MV (low-Z) linac targets for gold nanoparticle radiotherapy (GNPT) and to determine the microscopic dose enhancement ratio (DER) due to GNP for the alternative beamlines. In addition, to evaluate the degradation of dose enhancement arising from the increased attenuation of x rays and larger skin dose in water for the low-MV beams compared to the standard linac. METHODS: Monte Carlo simulations were used to compute dose and DER for various flattening-filter-free beams (2.5, 4, 6.5 MV). Target materials were beryllium, diamond, and tungsten-copper high-Z target. Target thicknesses were selected based on 20%, 60%, 70%, and 80% of the continuous slowing down approximation electron ranges for a given target material and energy. Evaluation of the microscopic DER was carried out for 100 nm GNP including the degradation factors due to beam attenuation. RESULTS: The greatest increase in DER compared to the standard 6.5 MV linac was for a 2.5 MV Be-target (factor of ∼ 2). Skin dose ranged from ∼ 10% (Be, 6.5 MV-80%) to ∼ 85% (Be, 2.5 MV-20%) depending on the target case. Attenuation of 2.5 MV beams at 22 cm was higher by ∼ 75% compared with the standard beam. Taking into account the attenuation at 22 cm depth, the effective dose enhancement was up to ∼ 60% above the DER of the high-Z target. For these cases the effective DER ranged between ∼ 1.6 and 6 compared with the standard linac. CONCLUSIONS: Low-Z (2.5 MV) GNPT is possible even after accounting for greater beam attenuation for deep-seated tumors (22 cm) and the increased skin dose. Further, it can lead to significant sparing of normal tissue while simultaneously escalating the dose in the tumor cells.


Subject(s)
Gold/chemistry , Gold/therapeutic use , Metal Nanoparticles , Radiotherapy/methods , Humans , Monte Carlo Method , Radiotherapy Dosage , Skin/radiation effects
5.
Med Phys ; 40(2): 021713, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23387736

ABSTRACT

PURPOSE: The treatment efficacy of radiation therapy for lung tumors can be increased by compensating for breath-induced tumor motion. In this study, we quantitatively examine a mathematical model of pseudomechanical linkages between an external surrogate signal and lung tumor motion. METHODS: A spring-dashpot system based on the Voigt model was developed to model the correlation between abdominal respiratory motion and tumor motion during lung radiotherapy. The model was applied to clinical data obtained from 52 treatments ("beams") from 10 patients, treated on the Mitsubishi Real-Time Radiation Therapy system, Sapporo, Japan. In Stage 1, model parameters were optimized for individual patients and beams to determine reference values and to investigate how well the model can describe the data. In Stage 2, for each patient the optimal parameters determined for a single beam were applied to data from other beams to investigate whether a beam-specific set of model parameters is sufficient to model tumor motion over a course of treatment. RESULTS: In Stage 1, the baseline root mean square (RMS) residual error for all individually optimized beam data was 0.90 ± 0.40 mm (mean ± 1 standard deviation). In Stage 2, patient-specific model parameters based on a single beam were found to model the tumor position closely, even for irregular beam data, with a mean increase with respect to Stage 1 values in RMS error of 0.37 mm. On average, the obtained model output for the tumor position was 95% of the time within an absolute bound of 2.0 and 2.6 mm in Stages 1 and 2, respectively. The model was capable of dealing with baseline, amplitude and frequency variations of the input data, as well as phase shifts between the input abdominal and output tumor signals. CONCLUSIONS: These results indicate that it may be feasible to collect patient-specific model parameters during or prior to the first treatment, and then retain these for the rest of the treatment period. The model has potential for clinical application during radiotherapy treatment of lung tumors.


Subject(s)
Lung Neoplasms/radiotherapy , Models, Biological , Movement , Respiration , Humans , Lung Neoplasms/physiopathology
6.
Med Phys ; 39(6Part9): 3701, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28519039

ABSTRACT

PURPOSE: While real time imaging of treatment through an electronic portal imaging device (EPID) is a powerful tool to monitor treatment, limited field of view and lower contrast from an MV beam can make assessment difficult for physicians. This work will develops a method to register and project contour outlines for the internal target volume (ITV) and planning target volume (PTV) of lung tumor cases onto cine mode EPID images to help physicians in interpretation during treatment. METHODS: A sequence of EPID images, acquired during treatment, was registered to treatment planning computed tomography (CT) by machine geometry and patient setup with cone-beam computed tomography (CBCT). The planning CT was converted from Hounsfield scale to electron density by calibration curves of our CT simulator and digitally reconstructed radiographs (DRRs) were produced to match the EPID geometry, pixel for pixel. ITV and PTV structures as defined on the planning CT were then projected onto the DRRs. The DRRs were registered to the EPID images using cross correlation of a single template defined within the treatment aperture of each image. Once registered, the contours from the DRR were transferred to the EPID. RESULTS: We were able to successfully register MV DRRs to EPID images and display the projected target volumes. Without introduced motion, geometric registration and CBCT guided patient setup up were sufficient to register the contours within a single pixel, as normalized cross correlations produced no additional shift. We expect the DRR/EPID registration to be an important step when looking at cases with substantial tumor movement. CONCLUSIONS: The visualization of target volumes provides a tool for physicians to interpret EPID images and assess treatment, especially in cases with tumor movement. The methods developed will serve as the basis for a clinical tool providing real time contours.

7.
Med Phys ; 38(1): 495-503, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21361218

ABSTRACT

PURPOSE: To investigate the feasibility of utilizing tumor tracks from electronic portal imaging device (EPID) images taken during treatment to verify the delivered dose. METHODS: The proposed method is based on a computation of the delivered fluence by utilizing the planned fluence and the tumor motion track for each field. A phantom study was designed to assess the feasibility of the method. The CIRS dynamic thorax phantom was utilized with a realistic soft resin tumor, modeled after a real patient tumor. The dose calculated with the proposed method was compared to direct measurements taken with 15 metal oxide semiconductor field effect transistors (MOSFETs) inserted in small fissures made in the tumor model. The phantom was irradiated with the tumor static and moved with different range of motions and setup errors. EPID images were recorded throughout all deliveries and the tumor model was tracked post-treatment with in-house developed software. The planned fluence for each field was convolved with the tumor motion tracks to obtain the delivered fluence. Utilizing the delivered fluence from each field, the delivered dose was calculated. The estimated delivered dose was compared to the dose directly measured with the MOSFETs. The feasibility of the proposed method was also demonstrated on a real lung cancer patient, treated with stereotactic body radiotherapy. RESULTS: The calculation of delivered dose with the delivered fluence method was in good agreement with the MOSFET measurements, with average differences ranging from 0.8% to 8.3% depending on the proximity of a dose gradient. For the patient treatment, the planned and delivered dose volume histograms were compared and verified the overall good coverage of the target volume. CONCLUSIONS: The delivered fluence method was applied successfully on phantom and clinical data and its accuracy was evaluated. Verifying each treatment fraction may enable correction strategies that can be applied during the course of treatment to ensure the desired dose coverage.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Lung/surgery , Radiation Dosage , Radiosurgery/methods , Electrical Equipment and Supplies , Humans , Lung/physiopathology , Lung Neoplasms/physiopathology , Lung Neoplasms/surgery , Movement , Phantoms, Imaging
8.
Phys Med Biol ; 53(11): 2923-36, 2008 Jun 07.
Article in English | MEDLINE | ID: mdl-18460744

ABSTRACT

It is important to monitor tumor movement during radiotherapy. Respiration-induced motion affects tumors in the thorax and abdomen (in particular, those located in the lung region). For image-guided radiotherapy (IGRT) systems, it is desirable to minimize imaging dose, so external surrogates are used to infer the internal tumor motion between image acquisitions. This process relies on consistent correspondence between the external surrogate signal and the internal tumor motion. Respiratory hysteresis complicates the external/internal correspondence because two distinct tumor positions during different breathing phases can yield the same external observation. Previous attempts to resolve this ambiguity often subdivided the data into inhale/exhale stages and restricted the estimation to only one of these directions. In this study, we propose a new approach to infer the internal tumor motion from external surrogate signal using state augmentation. This method resolves the hysteresis ambiguity by incorporating higher-order system dynamics. It circumvents the segmentation of the internal/external trajectory into different phases, and estimates the inference map based on all the available external/internal correspondence pairs. Optimization of the state augmentation is investigated. This method generalizes naturally to adaptive on-line algorithms.


Subject(s)
Adenocarcinoma/radiotherapy , Carcinoma, Small Cell/radiotherapy , Carcinoma, Squamous Cell/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Movement/physiology , Respiration
9.
Phys Med Biol ; 52(17): 5443-56, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17762097

ABSTRACT

In this work we develop techniques that can derive the tumor position from external respiratory surrogates (abdominal surface motion) through periodically updated internal/external correlation. A simple linear function is used to express the correlation between the tumor and surrogate motion. The function parameters are established during a patient setup session with the tumor and surrogate positions simultaneously measured at a 30 Hz rate. During treatment, the surrogate position, constantly acquired at 30 Hz, is used to derive the tumor position. Occasionally, a pair of radiographic images is acquired to enable the updating of the linear correlation function. Four update methods, two aggressive and two conservative, are investigated: (A1) shift line through the update point; (A2) re-fit line through the update point; (C1) re-fit line with extra weight to the update point; (C2) minimize the distances to the update point and previous line fit point. In the present study of eight lung cancer patients, tumor and external surrogate motion demonstrate a high degree of linear correlation which changes dynamically over time. It was found that occasionally updating the correlation function leads to more accurate predictions than using external surrogates alone. In the case of high imaging rates during treatment (greater than 2 Hz) the aggressive update methods (A1 and A2) are more accurate than the conservative ones (C1 and C2). The opposite is observed in the case of low imaging rates.


Subject(s)
Artifacts , Movement , Neoplasms/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Respiratory Mechanics , Subtraction Technique , Tomography, X-Ray Computed/methods , Algorithms , Humans , Neoplasms/physiopathology , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...