Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0301513, 2024.
Article in English | MEDLINE | ID: mdl-38722934

ABSTRACT

The decision of when to add a new hidden unit or layer is a fundamental challenge for constructive algorithms. It becomes even more complex in the context of multiple hidden layers. Growing both network width and depth offers a robust framework for leveraging the ability to capture more information from the data and model more complex representations. In the context of multiple hidden layers, should growing units occur sequentially with hidden units only being grown in one layer at a time or in parallel with hidden units growing across multiple layers simultaneously? The effects of growing sequentially or in parallel are investigated using a population dynamics-inspired growing algorithm in a multilayer context. A modified version of the constructive growing algorithm capable of growing in parallel is presented. Sequential and parallel growth methodologies are compared in a three-hidden layer multilayer perceptron on several benchmark classification tasks. Several variants of these approaches are developed for a more in-depth comparison based on the type of hidden layer initialization and the weight update methods employed. Comparisons are then made to another sequential growing approach, Dynamic Node Creation. Growing hidden layers in parallel resulted in comparable or higher performances than sequential approaches. Growing hidden layers in parallel promotes growing narrower deep architectures tailored to the task. Dynamic growth inspired by population dynamics offers the potential to grow the width and depth of deeper neural networks in either a sequential or parallel fashion.


Subject(s)
Algorithms , Neural Networks, Computer , Humans
2.
Trends Cogn Sci ; 26(2): 159-173, 2022 02.
Article in English | MEDLINE | ID: mdl-34991988

ABSTRACT

We are continuously bombarded by external inputs of various timescales from the environment. How does the brain process this multitude of timescales? Recent resting state studies show a hierarchy of intrinsic neural timescales (INT) with a shorter duration in unimodal regions (e.g., visual cortex and auditory cortex) and a longer duration in transmodal regions (e.g., default mode network). This unimodal-transmodal hierarchy is present across acquisition modalities [electroencephalogram (EEG)/magnetoencephalogram (MEG) and fMRI] and can be found in different species and during a variety of different task states. Together, this suggests that the hierarchy of INT is central to the temporal integration (combining successive stimuli) and segregation (separating successive stimuli) of external inputs from the environment, leading to temporal segmentation and prediction in perception and cognition.


Subject(s)
Brain Mapping , Visual Cortex , Brain/diagnostic imaging , Cognition , Humans , Magnetic Resonance Imaging
3.
Commun Biol ; 4(1): 970, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400800

ABSTRACT

We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs' stochastics with the ongoing temporal statistics of the brain's neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.


Subject(s)
Brain/physiology , Neural Pathways/physiology , Cognitive Neuroscience , Computational Biology , Humans , Nerve Net
4.
PLoS One ; 16(1): e0244822, 2021.
Article in English | MEDLINE | ID: mdl-33400724

ABSTRACT

Sensory stimuli endow animals with the ability to generate an internal representation. This representation can be maintained for a certain duration in the absence of previously elicited inputs. The reliance on an internal representation rather than purely on the basis of external stimuli is a hallmark feature of higher-order functions such as working memory. Patterns of neural activity produced in response to sensory inputs can continue long after the disappearance of previous inputs. Experimental and theoretical studies have largely invested in understanding how animals faithfully maintain sensory representations during ongoing reverberations of neural activity. However, these studies have focused on preassigned protocols of stimulus presentation, leaving out by default the possibility of exploring how the content of working memory interacts with ongoing input streams. Here, we study working memory using a network of spiking neurons with dynamic synapses subject to short-term and long-term synaptic plasticity. The formal model is embodied in a physical robot as a companion approach under which neuronal activity is directly linked to motor output. The artificial agent is used as a methodological tool for studying the formation of working memory capacity. To this end, we devise a keyboard listening framework to delineate the context under which working memory content is (1) refined, (2) overwritten or (3) resisted by ongoing new input streams. Ultimately, this study takes a neurorobotic perspective to resurface the long-standing implication of working memory in flexible cognition.


Subject(s)
Memory, Short-Term , Models, Neurological , Neuronal Plasticity , Neurons/physiology , Robotics
5.
Comput Intell Neurosci ; 2019: 6989128, 2019.
Article in English | MEDLINE | ID: mdl-31191633

ABSTRACT

Recognizing and tracking the direction of moving stimuli is crucial to the control of much animal behaviour. In this study, we examine whether a bio-inspired model of synaptic plasticity implemented in a robotic agent may allow the discrimination of motion direction of real-world stimuli. Starting with a well-established model of short-term synaptic plasticity (STP), we develop a microcircuit motif of spiking neurons capable of exhibiting preferential and nonpreferential responses to changes in the direction of an orientation stimulus in motion. While the robotic agent processes sensory inputs, the STP mechanism introduces direction-dependent changes in the synaptic connections of the microcircuit, resulting in a population of units that exhibit a typical cortical response property observed in primary visual cortex (V1), namely, direction selectivity. Visually evoked responses from the model are then compared to those observed in multielectrode recordings from V1 in anesthetized macaque monkeys, while sinusoidal gratings are displayed on a screen. Overall, the model highlights the role of STP as a complementary mechanism in explaining the direction selectivity and applies these insights in a physical robot as a method for validating important response characteristics observed in experimental data from V1, namely, direction selectivity.


Subject(s)
Motion Perception/physiology , Motion , Neuronal Plasticity/physiology , Robotics , Animals , Evoked Potentials, Visual/physiology , Neurons/physiology , Orientation/physiology , Visual Cortex/physiology , Visual Perception/physiology
6.
Front Neurorobot ; 12: 75, 2018.
Article in English | MEDLINE | ID: mdl-30524261

ABSTRACT

Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes.

7.
Neural Comput ; 30(6): 1573-1611, 2018 06.
Article in English | MEDLINE | ID: mdl-29652584

ABSTRACT

The neural correlates of decision making have been extensively studied with tasks involving a choice between two alternatives that is guided by visual cues. While a large body of work argues for a role of the lateral intraparietal (LIP) region of cortex in these tasks, this role may be confounded by the interaction between LIP and other regions, including medial temporal (MT) cortex. Here, we describe a simplified linear model of decision making that is adapted to two tasks: a motion discrimination and a categorization task. We show that the distinct contribution of MT and LIP may indeed be confounded in these tasks. In particular, we argue that the motion discrimination task relies on a straightforward visuomotor mapping, which leads to redundant information between MT and LIP. The categorization task requires a more complex mapping between visual information and decision behavior, and therefore does not lead to redundancy between MT and LIP. Going further, the model predicts that noise correlations within LIP should be greater in the categorization compared to the motion discrimination task due to the presence of shared inputs from MT. The impact of these correlations on task performance is examined by analytically deriving error estimates of an optimal linear readout for shared and unique inputs. Taken together, results clarify the contribution of MT and LIP to decision making and help characterize the role of noise correlations in these regions.

8.
J Neurophysiol ; 117(2): 738-755, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27881719

ABSTRACT

In various regions of the brain, neurons discriminate sensory stimuli by decreasing the similarity between ambiguous input patterns. Here, we examine whether this process of pattern separation may drive the rapid discrimination of visual motion stimuli in the lateral intraparietal area (LIP). Starting with a simple mean-rate population model that captures neuronal activity in LIP, we show that overlapping input patterns can be reformatted dynamically to give rise to separated patterns of neuronal activity. The population model predicts that a key ingredient of pattern separation is the presence of heterogeneity in the response of individual units. Furthermore, the model proposes that pattern separation relies on heterogeneity in the temporal dynamics of neural activity and not merely in the mean firing rates of individual neurons over time. We confirm these predictions in recordings of macaque LIP neurons and show that the accuracy of pattern separation is a strong predictor of behavioral performance. Overall, results propose that LIP relies on neuronal pattern separation to facilitate decision-relevant discrimination of sensory stimuli.NEW & NOTEWORTHY A new hypothesis is proposed on the role of the lateral intraparietal (LIP) region of cortex during rapid decision making. This hypothesis suggests that LIP alters the representation of ambiguous inputs to reduce their overlap, thus improving sensory discrimination. A combination of computational modeling, theoretical analysis, and electrophysiological data shows that the pattern separation hypothesis links neural activity to behavior and offers novel predictions on the role of LIP during sensory discrimination.


Subject(s)
Action Potentials/physiology , Models, Neurological , Motion Perception/physiology , Motion , Neurons/physiology , Parietal Lobe/cytology , Animals , Discrimination, Psychological , Macaca mulatta , Photic Stimulation , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...