Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(46): 17909-17923, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37947776

ABSTRACT

Elongation of the Very-Long-Chain Fatty Acids-4 (ELOVL4) enzyme that is expressed in neuronal tissues, sperm, and testes mediates biosynthesis of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) from dietary long chain PUFAs (LC-PUFAs). The VLC-PUFAs are critical for neuronal and reproductive function. Therefore, mutations in ELOVL4 that affect VLC-PUFA biosynthesis contribute to retinal degenerative diseases including Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3). Recent studies have also shown not only a depletion of retinal VLC-PUFAs with normal aging but also a more significant loss of VLC-PUFAs in donor eyes of patients with age-related macular degeneration (AMD). However, currently, there are no natural sources of VLC-PUFAs to be evaluated as dietary supplements for the attenuation of retinal degeneration in animal models of STGD3. Here, we report the development of a novel chemical approach for elongation of eicosapentaenoic (C20:5 n-3) and docosahexaenoic (C22:6 n-3) acids from fish oils by 6 carbon atoms to make a unique group of VLC-PUFAs, namely all-cis-hexacosa-11,14,17,20,23-pentaenoic acids (C26:5 n-3) and all-cis-octacosa-10,13,16,19,22,25-hexaenoic acids (C28:6 n-3). The three-step elongation approach that we report herein resulted in a good overall yield of up to 20.2%. This more sustainable approach also resulted in improved functional group compatibility and minimal impact on the geometrical integrity of the all-cis double bond system of the VLC-PUFAs. In addition, we also successfully used commercial deep-sea fish oil concentrate as an inexpensive material for the C6 elongation of fish oil LC-PUFAs into VLC-PUFAs, which resulted in the making of gram scales of VLC-PUFAs with an even higher isolation yield of 31.0%. The quality of fish oils and the content of oxidized lipids were key since both strongly affected the activity of the PEPPSI-IPr catalyst and ultimately the yield of coupling reactions. Downstream enzymatic interesterification was used for the first time to prepare structured glycerolipids enriched with VLC-PUFAs that could be evaluated in vivo to determine absorption and transport to target tissues relative to those of the free fatty acid forms. It turned out that in the synthesis of structured triacylglycerols and glycerophospholipids with VLC-PUFAs, the polarity of the immobilized lipase carrier and its humidity were essential.


Subject(s)
Fish Oils , Membrane Proteins , Animals , Humans , Male , Fish Oils/analysis , Membrane Proteins/genetics , Semen , Retina , Fatty Acids, Unsaturated/chemistry , Fatty Acids/analysis
2.
Foods ; 10(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34829047

ABSTRACT

Oilseed cakes are produced as a by-product of oil pressing and are mostly used as feed. Their use for human consumption is due to the functional properties and benefits for human health. Herein, oilseed cake flours of eight species (flax, hemp, milk thistle, poppy, pumpkin, rapeseed, safflower, sunflower) were sieved into fractions above (A250) and below (B250) 250 µm. The chemical composition, SDS-PAGE profiles, colour, functional properties and antioxidant activities of these flours were evaluated. The B250 fractions were evaluated as being protein and ash rich, reaching crude protein and ash content ranging from 31.78% (milk thistle) to 57.47% (pumpkin) and from 5.0% (flax) to 11.19% (poppy), respectively. A high content of carbohydrates was found in the flours of hemp, milk thistle and safflower with a significant increase for the A250 fraction, with a subsequent relation to a high water holding capacity (WHC) for the A250 fraction (flax, poppy, pumpkin and sunflower). The A250 milk thistle flour was found to have the richest in polyphenols content (TPC) (40.89 mg GAE/g), with the highest antioxidant activity using an ABTS•+ assay (101.95 mg AAE/g). The A250 fraction for all the species exhibited lower lightness than the B250 fraction. The obtained results indicate that sieving oilseed flour with the aim to prepare flours with specific functional characteristics and composition is efficient only in combination with a particular species.

3.
J Agric Food Chem ; 67(35): 9916-9925, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31398025

ABSTRACT

Targeted analysis confirmed the presence of new phytosterol degradation products in fully hydrogenated commercial samples. EI-MS, APCI-MS, and 1D-NMR experiments led to the identification of 10 novel markers of catalytic hydrogenation, among which 5α-sitostan-3-one and 5α-campestan-3-one, isomers of saturated and monounsaturated steroidal hydrocarbons, were reported in edible oils for the first time. Examination of the phytosterol degradation mechanism was done by the catalytic transfer deuteration technique. The mitigation strategy of potentially detrimental compounds included optimization of processing parameters. The effect of catalyst dosage (≤0.1% based on Ni basis) and temperature region (>180 °C) were the most crucial factors in phytosterol degradation control.


Subject(s)
Hydrocarbons/chemistry , Plant Oils/chemistry , Catalysis , Hot Temperature , Hydrogenation , Isomerism , Magnetic Resonance Spectroscopy , Phytosterols/chemistry , Spectrometry, Mass, Electrospray Ionization
4.
Food Chem ; 211: 124-9, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27283615

ABSTRACT

3-MCPD esters are contaminants that can form during refining of vegetable oils in the deodorization step. It was experimentally shown that their content in the vegetable oil depends on the acid value of the vegetable oil and the chloride content. 3-MCPD esters form approximately 2-5 times faster from diacylglycerols than from monoacylglycerols. It has been proved that the higher fatty acids content in the oil caused higher 3-MCPD esters content in the deodorization step. Neutralization of free fatty acids in the vegetable oil before the deodorization step by alkaline carbonates or hydrogen carbonates can completely suppress the formation of 3-MCPD esters. Potassium salts are more effective than sodium salts.


Subject(s)
Food Handling/methods , Plant Oils/chemistry , alpha-Chlorohydrin/analysis , alpha-Chlorohydrin/chemical synthesis , Chlorides/analysis , Diglycerides/chemistry , Esters , Fatty Acids/analysis , Fatty Acids, Nonesterified/chemistry , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...