Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Entropy (Basel) ; 26(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38539733

ABSTRACT

In this note, we revisit the scaling relations among "hatted critical exponents", which were first derived by Ralph Kenna, Des Johnston, and Wolfhard Janke, and we propose an alternative derivation for some of them. For the scaling relation involving the behavior of the correlation function, we will propose an alternative form since we believe that the expression is erroneous in the work of Ralph and his collaborators.

2.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35318848

ABSTRACT

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

3.
Entropy (Basel) ; 23(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34573799

ABSTRACT

We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of '+' or '-', 'up' or 'down', 'yes' or 'no'), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex network where both the spin strength and degree distributions are governed by power laws. We show that in the annealed network approximation, thermodynamic functions of the model are self-averaging and we obtain an exact solution for the partition function. This allows us derive the leading temperature and field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections at the interface of different phases. We find the delicate interplay of the two power laws leads to new universality classes.

4.
J Phys Condens Matter ; 32(18): 185301, 2020 May 01.
Article in English | MEDLINE | ID: mdl-31978918

ABSTRACT

We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field. When the field is parallel to the nanotube axis, the rotation-induced electric field brings about the spin-orbit interaction which, together with the kinetic, inertial, and Zeeman terms, compose the Schrödinger-Pauli Hamiltonian of the system. Full diagonalization of this Hamiltonian yields the eigenstates and eigenenergies leading to the calculation of the charge and spin currents. Our main result is the demonstration that, by suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.

5.
J Phys Condens Matter ; 31(49): 495703, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31422949

ABSTRACT

We investigate the charge carrier dynamics in bilayer graphene subject to monochromatic laser irradiation within the Landau level quantization regime. Even though the radiation field does not lift the energy degeneracy of the lowest Landau levels (LLs), it nevertheless has a strong effect on the photoinduced pseudospin polarization response for higher LLs ([Formula: see text]). Our results show that the photoinduced bandgaps lead to a finite response of the averaged pseudospin polarization with nontrivial oscillating behavior. It is shown that the contribution from these higher LL transitions turns out to be crucial to achieve an enhanced photoinduced polarization in radiated bilayer graphene. The experimental feasibility of our findings is also discussed.

6.
Phys Rev Lett ; 116(11): 115701, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035310

ABSTRACT

Renormalization-group theory has stood, for over 40 years, as one of the pillars of modern physics. As such, there should be no remaining doubt regarding its validity. However, finite-size scaling, which derives from it, has long been poorly understood above the upper critical dimension d_{c} in models with free boundary conditions. In addition to its fundamental significance for scaling theories, the issue is important at a practical level because finite-size, statistical-physics systems with free boundaries and above d_{c} are experimentally relevant for long-range interactions. Here, we address the roles played by Fourier modes for such systems and show that the current phenomenological picture is not supported for all thermodynamic observables with either free or periodic boundaries. In particular, the expectation that dangerous irrelevant variables cause Gaussian-fixed-point scaling indices to be replaced by Landau mean-field exponents for all Fourier modes is incorrect. Instead, the Gaussian-fixed-point exponents have a direct physical manifestation for some modes above the upper critical dimension.

7.
Nanotechnology ; 27(13): 135302, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26900666

ABSTRACT

Quasi-two-dimensional systems may exibit curvature, which adds three-dimensional influence to their internal properties. As shown by da Costa (1981 Phys. Rev. A 23 1982-7), charged particles moving on a curved surface experience a curvature-dependent potential which greatly influence their dynamics. In this paper, we study the electronic ballistic transport in deformed nanotubes. The one-electron Schrödinger equation with open boundary conditions is solved numerically with a flexible MAPLE code made available as supplementary data. We find that the curvature of the deformations indeed has strong effects on the electron dynamics, suggesting its use in the design of nanotube-based electronic devices.

8.
J Chem Phys ; 142(19): 194308, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26001462

ABSTRACT

A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p(z) type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π(z) - π(z) coupling via interbase p(x,y) - p(z) hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

9.
J Phys Condens Matter ; 22(11): 115303, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-21389461

ABSTRACT

A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 1): 031711, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16241464

ABSTRACT

Simulations of nematic-isotropic transition of liquid crystals in two dimensions are performed using an O2 vector model characterized by nonlinear nearest neighbor spin interaction governed by the fourth Legendre polynomial P4. The system is studied through standard finite-size scaling and conformal rescaling of density profiles of correlation functions. A topological transition between a paramagnetic phase at high temperature and a critical phase at low temperature is observed. The low temperature limit is discussed in the spin wave approximation and confirms the numerical results.

SELECTION OF CITATIONS
SEARCH DETAIL
...